KSCE Journal of Civil Engineering

, Volume 15, Issue 4, pp 611–621 | Cite as

Sustainable development and energy geotechnology — Potential roles for geotechnical engineering

  • R. J. Fragaszy
  • J. C. Santamarina
  • A. Amekudzi
  • D. Assimaki
  • R. Bachus
  • S. E. Burns
  • M. Cha
  • G. C. Cho
  • D. D. Cortes
  • S. Dai
  • D. N. Espinoza
  • L. Garrow
  • H. Huang
  • J. Jang
  • J. W. Jung
  • S. Kim
  • K. Kurtis
  • C. Lee
  • C. Pasten
  • H. Phadnis
  • G. Rix
  • H. S. Shin
  • M. C. Torres
  • C. Tsouris
Article

Abstract

The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwide problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.

Keywords

sustainability energy CO2 sequestration education climate change research geothermal underground storage hydrate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, R. D., Doherty, T. J., and Fossum, A. F. (1982a). Geotechnical issues and guidelines for storage of compressed air in excavated hard rock caverns, PNL-4180, Pacific Northwest Laboratory, Richland, Washington.CrossRefGoogle Scholar
  2. Allen, R. D., Doherty, T. J., and Thoms, R. L. (1982b). Geotechnical factors and guidelines for storage of compressed air in solutionmined salt cavities, PNL-4242, Pacific Northwest Laboratory, Richland, Washington.CrossRefGoogle Scholar
  3. Allen, R. D., Doherty, T. J., Erikson, R. L., and Wiles, L. E. (1983). Factors affecting storage of compressed air in porous-rock reservoirs, PNL-4707, Pacific Northwest Laboratory, Richland, Washington.CrossRefGoogle Scholar
  4. American Coal Ash Association. (2008). Coal Combustion Product (CCP) production & use survey report, available at www.acaausa.org.
  5. American Coal Ash Association. (2010). homepage http://www.acaausa.org/index.cfm.
  6. Anderson, B., Batchelor, A. S., Blackwell, D. D., DiPippo, R., Drake, E. M., Garnish, J., Livesay, B., Moore, M. C., Nichols, K., Petty, S., Toksöz, M. N., and Ralph W. Veatch, J. (2006). The future of geothermal energy, Massachusetts Institute of Technology, Boston.Google Scholar
  7. Andre, L., Audigane, P., Azaroual, M., and Menjoz, A. (2007). “Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France).” Energy Conversion and Management, Vol. 48, No. 6, pp. 1782–1797.CrossRefGoogle Scholar
  8. Aydin, A., Borja, R. I., and Eichhubl, P. (2006). “Geological and mathematical framework for failure modes in granular rock.” Journal of Structural Geology, Vol. 28, No. 1, pp. 83–98.CrossRefGoogle Scholar
  9. Beke, B. (1964). Principles of comminution, Akademiai Kiado, Budapest.Google Scholar
  10. Brandl, H. (2006), “Energy foundations and other thermo-active ground structures.” Geotechnique, Vol. 56, No. 2, pp. 81–122.CrossRefGoogle Scholar
  11. Brown, K. M., Bekins, B., Clennell, B., Dewhurst, D., and Westbrook, G. (1994). “Heterogeneous hydrofracture development and accretionary fault dynamics.” Geology, Vol. 22, No. 3, pp. 259–262.CrossRefGoogle Scholar
  12. Ceglarska-Stefanska, G. and Zarebska, K. (2002). “Expansion and contraction of variable rank coals during the exchange sorption of CO2 and CH4.” Adsorption Science and Technology, Vol. 20, No. 1, pp. 49–62.CrossRefGoogle Scholar
  13. Chu, S. (2009). “Carbon capture and sequestration.” Science, Vol. 325, No. 5948, p. 1599.CrossRefGoogle Scholar
  14. DeJong, J. T., Mortensen, B. M., Martinez, B. C., and Nelson, D. C. (2008). “Bio-mediated soil improvement.” Ecological Engineering, Vol. 36, No. 2, pp. 197–210.CrossRefGoogle Scholar
  15. Department of Energy (2009). Electric power annual 2007, U.S. Energy Information Administration, http://www.eia.doe.gov/bookshelf/brochures/epa/epa.html.
  16. Department of Energy (2010). Energy savers — Geothermal heat pumps, http://www.energysavers.gov/your_home/space_heating_cooling/index.cfm/mytopic=12640 (accessed June, 2010).
  17. Department of Energy and National Energy Technology Laboratory (2008). Carbon sequestration ATLAS of the United States of America and Canada, 2nd Edition, http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasII/
  18. Duchane, D. and Brown, D. (2002). “Hot Dry Rock (HDR) geothermal energy research and development at Fenton Hill, New Mexico.” Geo-Heat Center Bulletin, Vol. 23, No. 4, pp. 13–19, http://geoheat.oit.edu/.Google Scholar
  19. Economides, M. J. and Nolte, K. G. (2000). Reservoir stimulation, Wiley, Chichester, England.Google Scholar
  20. Environmental Protection Agency (2007). Municipal solid waste in the United States, http://www.epa.gov/waste/nonhaz/municipal/pubs/msw07-rpt.pdf.
  21. Environmental Protection Agency (2010). Materials characterization paper in support of the proposed rulemaking: Identification of nonhazardous secondary materials that are solid wast Cement Kiln Dust (CKD), http://www.epa.gov/wastes/nonhaz/define/pdfs/cementkiln.pdf.
  22. Espinoza, D. N., Kim, S. H., and Santamarina, J. C. (2011). “CO2 geological storage — Geotechnical implications.” KSCE Journal of Civil Engineering, Special Issue on Energy Geotechnology, Edited by J. C. Santamarina and G. C. Cho, Vol. 15, No. 4, pp. 707–719.Google Scholar
  23. Espinoza, D. N. and Santamarina, J. C. (2010). “Ant tunnels in soils — a geomechnical interpretation.” Granular Matter (in print).Google Scholar
  24. European Construction Technology Platform (2005). Strategic research agenda & vision 2030 for the European underground construction sector, p. 56.Google Scholar
  25. Gens, A. (2007). “The 47th Rankine Lecture: Soil-environment interactions in geotechnical engineering.” Geotechnique, Vol. 60, No. 1, pp. 3–74.Google Scholar
  26. Gunter, W. D., Perkins, E. H., and Hutcheon, I. (2000). “Aquifer disposal of acid gases: Modelling of water-rock reactions for trapping of acid wastes.” Applied Geochemistry, Vol. 15, No. 8, pp. 1085–1095.CrossRefGoogle Scholar
  27. Holling, C. S. (2001). “Understanding the complexity of economic, ecological, and social systems.” Ecosystems, Vol. 4, pp. 390–405, DOI: 10.1007/s10021-001-0101-5.CrossRefGoogle Scholar
  28. Hudson, J. A. (1996). Editorial, International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts, Vol. 33, No. 1, p. 3.Google Scholar
  29. International Energy Agency (2009). Key world energy statistics 2009, http://www.iea.org/textbase/nppdf/free/2009/key_stats_2009.pdf (accessed August 2010).
  30. Intergovernmental Panel on Climate Change (2000). Special report on emissions scenarios, Cambridge University Press, UK.Google Scholar
  31. Ivanov, V. and Chu, J. (2008). “Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ.” Reviews in Environmental Science and Biotechnology, Vol. 7, No. 2, pp. 139–153.CrossRefGoogle Scholar
  32. Jang, J., Narsilio, G. A., and Santamarina, J. C. (2011). “Hydraulic conductivity in spatially varying media — A pore-scale investigation.” Geophysical Journal International, DOI: 10.1111/j.1365-246X.2010.04893.x (in print).Google Scholar
  33. Jung, J. W., Espinoza, D. N., and Santamarina, J. C. (2010). “Properties and phenomena relevant to CH4-CO2 replacement in hydrate bearing sediments.” Journal of Geophysical Research — Solid Earth, Vol. 115, B10102, DOI: 10.1029/2009JB000812.CrossRefGoogle Scholar
  34. Kaszuba, J. P., Janecky, D. R., and Snow, M. G. (2005). “Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository.” Chemical Geology, Vol. 217, Nos. 3–4, pp. 277–293.CrossRefGoogle Scholar
  35. Keck, R. G. and Withers, R. J. (1994). Field demonstration of hydraulic fracturing for solids waste injection with real-time passive seismic monitoring, Society of Petroleum Engineer — Annual Technical Conference and Exhibition, New Orleans, LA, USA.Google Scholar
  36. Kim, H.-K. and Santamarina, J. C. (2008). “Spatial variability: Drained and undrained deviatoric load response.” Géotechnique, Vol. 58, No. 10, pp. 805–814.CrossRefGoogle Scholar
  37. Levin, S. A. and Clark, W. C. (2010). “Toward a science of sustainability.” Toward a Science of Sustainability Conference, Nov. 29–Dec. 2 2009, Warrenton, Virginia, http://www.hks.harvard.edu/var/ezp_site/storage/fckeditor/file/pdfs/centers-programs/centers/cid/publications/faculty/wp/196.pdf.
  38. Mackay, D. (2009). Sustainable energy — Without the hot air, UIT Cambridge Ltd., Cambridge, UK, p. 368.Google Scholar
  39. Mazumder, S., Karnik, A., and Wolf, K. H. (2006). “Swelling of coal in response to CO2 sequestration for ECBM and its effect on fracture permeability.” Society of Petroleum Engineer Journal, Vol. 11, No. 3, pp. 390–398.Google Scholar
  40. Mitchell, J. K. and Santamarina, J. C. (2005). “Biological considerations in geotechnical engineering.” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 131, No. 10, pp. 1222–1233.CrossRefGoogle Scholar
  41. Moore Economics (2009). The economic contributions of U.S. mining in 2007: Providing Vital Resources for America, prepared for the National Mining Association, available at www.nma.org.
  42. Mörner, N. A. (2001). “In absurdum: Long-term predictions and nuclear waste handling.” Engineering Geology, Vol. 61, Nos. 2–3, pp. 75–82.CrossRefGoogle Scholar
  43. Muto, N., Yanagida, H., Nakatsuji, T., Sugita, M., Ohtsuka, Y., and Arait, Y. (1992). “Design of intelligent materials with selfdiagnosing function for preventing fatal fracture.” Smart Materials and Structures, Vol. 1, pp. 324–329.CrossRefGoogle Scholar
  44. Oechel, W. C., Hastings, S. J., Jenkins, M., Riechers, G., Grulke, N. E., and Vourlitis, G. L. (1993). “Recent change of arctic tundra ecosystems from a net carbon sink to a source.” Nature, Vol. 316, pp. 520–526.CrossRefGoogle Scholar
  45. Olivella, S., Carrera, J., Gens, A., and Alonso, E. (1996). “Porosity variations in saline media caused by temperature gradients coupled to multiphase flow and dissolution/precipitation.” Transport in Porous Media, Vol. 25, No. 1, pp. 1–25.CrossRefGoogle Scholar
  46. O’sullivan, M. and Mannington, W. (2005). “Renewability of the Wairakei-Tauhara geothermal resource.” World Geothermal Congress, Apr. 24–29, Antalya, Turkey.Google Scholar
  47. Pacala, S. and Socolow, R. (2004). “Stabilization wedges: Solving the climate problem for the next 50 years with current technologies.” Science, Vol. 305, pp. 968–972.CrossRefGoogle Scholar
  48. Parker, H. W. (2007). “Risk analyses and life cycle costs of underground facilities.” ISRM-ITA Specialized Session, July, Lisbon.Google Scholar
  49. Pasten, C. and Santamarina, J. C. (2011). “Energy geo-storage — Analysis and geomechanical implications.” KSCE Journal of Civil Engineering, Special Issue on Energy Geotechnology, Edited by J. C. Santamarina and G. C. Cho, Vol. 15, No. 4, pp. 655–667.Google Scholar
  50. Renard, F., Gundersen, E., Hellmann, R., Collombet, M., and Le-Guen, Y. (2005). “Numerical modeling of the effect of carbon dioxide sequestration on the rate of pressure solution creep in limestone: Preliminary results.” Oil & Gas Science and Technology, Vol. 60, No. 2, pp. 381–399.CrossRefGoogle Scholar
  51. Rubber Manufacturers Association (2009). Scrap tire markets in the United State, 9th Biennial Report, http://www.rma.org/scrap_tires.
  52. Rutter, E. H. and Elliott, D. (1976). “The kinetics of rock deformation by pressure solution [and Discussion].” Philosophical Transactions of the Royal Society of London, Series A, Mathematical and Physical Sciences, Vol. 283, No. 1312, pp. 203–219.CrossRefGoogle Scholar
  53. Santamarina, J. C. (2006). “The worldwide energy situation.” Anales Academia Nacional de Ingenieria, Vol. II-06, pp. 79–98.Google Scholar
  54. Schoenung, S. (2001). Characteristics and technologies for long-versus short-term energy storage: A study by the DOE energy storage systems program, SAND2001-0765, Sandia National Laboratories, Albuquerque, New Mexico.CrossRefGoogle Scholar
  55. Selley, R. C. (1985). Elements of petroleum geology, W.H. Freeman and Co., New York.Google Scholar
  56. Shin, H., Santamarina, J. C., and Cartwright, J. A. (2008). “Contractiondriven shear failure in compacting uncemented sediments.” Geology, Vol. 36, No. 12, pp. 931–934.CrossRefGoogle Scholar
  57. Tan, S. M. (2006). “Geotechnical aspects of the smart tunnel.” International Conference and Exhibition on Trenchless Technology and Tunnelling, Mar. 7–9, Subang Jaya, Malaysia.Google Scholar
  58. Torp, T. A. and Gale, J. (2004). “Demonstrating storage of CO2 in geological reservoirs: The sleipner and SACS projects.” Energy, Vol. 29, Nos. 9–10, pp. 1361–1369.CrossRefGoogle Scholar
  59. Tsouris, C., Aaron, D. S., and Williams, K. A. (2010). “Is carbon capture and storage really needed?” Environmental Science & Technology, Vol. 44, No. 11, pp. 4042–4045.CrossRefGoogle Scholar
  60. United Nations (1987). Report of the world commission on environment and development: Our common future, http://www.un-documents.net/wced-ocf.htm (accessed June, 2010).
  61. van Bergen, F., Pagnier, H. J. M., van der Meer, L. G. H., van den Belt, F. J. G., Winthaegen, P. L. A., and Krzystolik, P. (2003). “Development of a field experiment of ECBM in the Silesian coal basin of Poland (RECOPOL).” International Coalbed Methane Symposium, Tuscaloosa, Alabama, USA.Google Scholar
  62. Watson, M. N., Zwingmann, N., and Lemon, N. M. (2004), “The Ladbroke Grove-Katnook carbon dioxide natural laboratory: A recent CO2 accumulation in a lithic sandstone reservoir.” Energy, Vol. 29, Nos. 9–10, pp. 1457–1466.CrossRefGoogle Scholar
  63. Weston, R. F. (1994). “Towards understanding the idea of sustainable development, the role of engineering in sustainable development: selected readings and references for the profession.” M.D. Ellis, Ed., American Association of Engineering Societies, Washington, D.C., pp. 40–43.Google Scholar
  64. Zimov, S. A., Schuur, E. A. G., and Chapin, III, F. S. (2006). “Permafrost and the global carbon budget.” Science, Vol. 312, pp. 1612–1613.CrossRefGoogle Scholar

Copyright information

© Korean Society of Civil Engineers and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. J. Fragaszy
    • 1
  • J. C. Santamarina
    • 2
  • A. Amekudzi
    • 2
  • D. Assimaki
    • 2
  • R. Bachus
    • 3
  • S. E. Burns
    • 2
  • M. Cha
    • 2
  • G. C. Cho
    • 4
  • D. D. Cortes
    • 2
  • S. Dai
    • 2
  • D. N. Espinoza
    • 2
  • L. Garrow
    • 2
  • H. Huang
    • 2
  • J. Jang
    • 2
  • J. W. Jung
    • 2
  • S. Kim
    • 2
  • K. Kurtis
    • 2
  • C. Lee
    • 2
  • C. Pasten
    • 2
  • H. Phadnis
    • 2
  • G. Rix
    • 2
  • H. S. Shin
    • 5
  • M. C. Torres
    • 6
  • C. Tsouris
    • 7
  1. 1.Civil, Mechanical, and Manufacturing Innovation DivisionNational Science FoundationArlingtonUSA
  2. 2.Dept. of Civil and Environmental EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Geosyntec ConsultantsKennesawUSA
  4. 4.Dept. of Civil and Environmental EngineeringKorea Advanced Institute of Science and Technology (KAIST)DaejeonKorea
  5. 5.Dept. of Civil and Environmental EngineeringUniversity of UlsanUlsanKorea
  6. 6.Dept. of Civil EngineeringUniversidad Nacional de ColombiaBogotaColombia
  7. 7.Oak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations