Skip to main content

Estimation of Markovian transition probabilities for pavement deterioration forecasting


While it is impossible to estimate when a road section will collapse, the understanding of road section deterioration can help asset managers predict the condition of road sections and take appropriate actions for rehabilitations. Deterioration forecasting modeling is an essential element for an efficient pavement management system. Although the Pavement Management System (PMS) has been introduced and operated for optimal road maintenance since the late 1980s in Korea, some problems for accurate prediction of road deterioration remain due to the quality of pavement performance data and the different pavement structural, material and environmental conditions. In this paper, a methodology to estimate the Markov transition probability model is presented to forecast the deterioration process of road sections. The deterioration states of the road sections are categorized into several ranks and the deterioration processes are characterized by hazard models. The Markov transition probabilities between the deterioration states, which are defined by the non-uniform or irregular intervals between the inspection points in time, are described by the exponential hazard models. Furthermore, in order to verify the validity of the proposed method, the applicability of the estimation methodology presented in this paper is investigated by using the empirical surface data set of the national highway in Korea.

This is a preview of subscription content, access via your institution.


  • Abaza, K. A., Ashur, S. A., and Al-Khatib, I. A. (2004). “Integrated pavement management system with a Markovian prediction model.” J. of Transp. Engrg., Vol. 130, No. 1, pp. 24–33.

    Article  Google Scholar 

  • Amemiya, T. (1985). Advanced Econometrics, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Butt, A. A., Shahin, M. Y., Carpenter, S. H., and Carnahan, J. V. (1994). “Application of Markov process to pavement management systems at network level.” 3rd International Conference on Managing Pavements, TRB, Vol. 2, pp. 159–172.

    Google Scholar 

  • Cesare, M. A., Santamarina, J. C., Turstra, C. J., and Vanmarcke, E. (1992). “Modeling bridge deterioration with Markov chains.” J. of Transp. Engrg., Vol. 118, No. 6, pp. 821–833.

    Google Scholar 

  • Chung, S., Hong, T., Han, S. Son, J., and Lee, S. (2006). “Life cycle cost analysis based optimal maintenance and rehabilitation for underground infrastructure management.” KSCE J. of Civil Engineering, Vol. 10, No. 4, pp. 243–253.

    Article  Google Scholar 

  • Federal Highway Administration (FHWA). (1993). PONTIS technical manual, Publ. No. FHWA-SA-94-031, U.S. Dept. of Transp., Washington, D.C.

    Google Scholar 

  • Gourieroux, C. (2000). Econometrics of qualitative dependent variables, Cambridge University Press.

  • Greene, W. H. (1997). Econometric analysis, 3rd. Ed., Macmillan, New York.

    Google Scholar 

  • Guignier, F. and Madanat, S. (1999). “Optimization of infrastructure systems maintenance and improvement policies.” J. of Infrastructure Systems, Vol. 5, No. 4, pp. 124–134.

    Article  Google Scholar 

  • Jiang, M., Corotis, R. B., and Ellis, H. (2000). “Optimal life-cycle costing with partial observability.” J. of Infrastructure Systems, Vol. 6, No. 2, pp. 56–66.

    Article  Google Scholar 

  • Jiang, Y., Saito, M., and Sinha, K. C. (1989). “Bridge performance prediction model using the Markov chain.” Transp. Res. Rec. 1180, TRB, pp. 25–32.

    Google Scholar 

  • Kim, S. and Kim N. (2006). “Development of performance prediction models in flexible pavement using regression analysis method” KSCE J. of Civil Engineering, Vol. 10, No. 2, pp. 91–96.

    Article  Google Scholar 

  • Lancaster, T. (1990). The econometric analysis of transition data, Cambridge University Press.

  • Lee, T. C., Judge, G. G., and Zellner, A. (1970). Estimating the parameters of the Markov probability model from aggregate time series data, Amsterdam, North-Holland.

  • Loizos, A. and Karlaftis, M.G. (2005). “Prediction of pavement crack initiation from in-service pavements: A duration model approach” J. of the Transportation Research Board, No.1940, TRB, pp. 38–42.

  • Madanat, S. M., Mishalani, R., and Wan Ibrahim, W. H. (1995). “Estimation of infrastructure transition probabilities from condition rating data.” J. of Infrastructure Systems, Vol. 1, No. 2, pp. 120–125.

    Article  Google Scholar 

  • Mishalani, R. G. and Madanat, S. M. (2002). “Computation of infrastructure transition probabilities using stochastic duration models.” J. of Infrastructure Systems, Vol. 8, No. 4, pp. 139–148.

    Article  Google Scholar 

  • Park, S. (2004). “Identifying the hazard characteristics of pipes in water distribution systems by using the proportional hazard model: 2. Applications.” KSCE J. of Civil Engineering, Vol. 8, No. 6, pp. 669–677.

    Article  Google Scholar 

  • Prozzi, J. A. and Madanat, S. M. (2004). “Development of pavement performance models by combining experimental and field data.” J. of Infrastructure Systems, Vol. 10, No. 1, pp. 9–22.

    Article  Google Scholar 

  • Shin, H. (2006). “Development of a semi-parametric stochastic model of asphalt pavement crack initiation.” KSCE J. of Civil Engineering, Vol. 10, No. 3, pp. 189–194.

    Article  Google Scholar 

  • Tobin, J. (1958). “Estimation of relationships for limited dependent variables.” Econometrica, Vol. 26, pp. 24–36.

    MATH  Article  MathSciNet  Google Scholar 

  • Tsuda, Y., Kaito, K., Aoki, K., and Kobayashi, K. (2005) “Estimating markovian transition probabilities for bridge deterioration forecasting.” JSCE Journal, No.801/IV-73, pp. 69–82 (in Japanese).

  • Wee, S. and Kim, N. (2006). “Angular fuzzy logic application for pavement maintenance and rehabilitation strategy in Ohio.” KSCE J. of Civil Engineering, Vol. 10, No. 2, pp. 81–89.

    Article  Google Scholar 

  • Yang, J., Gunaratne, M., Lu, J. J., and Dietrich, B. (2005). “Use of recurrent Markov chains for modeling the crack performance of flexible pavements.” J. of Transportation Engineering, Vol. 131, No. 11, pp. 861–872.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Myungsik Do.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kobayashi, K., Do, M. & Han, D. Estimation of Markovian transition probabilities for pavement deterioration forecasting. KSCE J Civ Eng 14, 343–351 (2010).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Markov transition probability
  • asset management
  • exponential hazard function
  • road pavement deterioration forecasting
  • pavement management system