Skip to main content
Log in

Global Dense Two-Branch Cascade Network for Underwater Image Enhancement

用于水下图像增强的全局密集双分支级联网络

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

In recent years, underwater image enhancement techniques has received a wide range of attention from related researchers with the rise of marine resource exploitation. As the existing network feature extraction is not sufficient and the enhancement results have the problems of incomplete defogging and inaccurate color bias correction, in this paper, an underwater image enhancement method based on global dense two-branch cascade network and spatial domain grayscale transformation is proposed. The global dense two-branch cascade network can amplify the global dimensional interaction features while reducing information reduction on the one hand, and extract spatial features by obtaining spatial information at different scales to achieve richer feature extraction on the other hand; the spatial domain grayscale transformation operation can improve the contrast while color correcting the image, which makes the image visual effect better. After the training is completed, an end-to-end inference can be performed on the underwater images. The experimental results show that this paper’s model works best on the EUVP dataset, and compared with the second best, this paper’s model obtains 3.371, 0.06, 0.716, 0.024, and 1.727 improvements in PSNR, SSIM, UIQM, UCIQE, and CCF, respectively. Compared with other representative methods, the proposed network achieves significant visual enhancement in dealing with severe color bias, low light, and detail loss in underwater images.

摘要

近年来,随着海洋资源开发的兴起,水下图像增强技术备受关注。针对现有网络特征提取不充分和增强结果存在去雾不彻底和色偏校正不准确的问题,提出了一种基于全局密集双分支级联网络和空域灰度变换的水下图像增强方法。全局密集双分支级联网络一方面可以在减少信息缩减的同时,放大全局维度交互特征;另一方面通过获得不同尺度的空间信息来提取空间特征,从而实现更丰富的特征提取。空域灰度变换操作可以在提高对比度的同时对图像进行颜色校正,使得图像视觉效果更好。在训练完成后,可以端到端的对水下图像进行推理。实验结果表明,本文的模型在EUVP数据集上效果最好;与第二名相比,本文的模型在PSNR、SSIM、UIQM、UCIQE和CCF方面分别获得了3.371、0.06、0.716、0.024和2.527 dB的提升。和其他代表性方法相比,所提网络在处理水下图像严重色偏、低光照、细节丢失方面取得了显著的视觉效果提升。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HUMMEL R. Image enhancement by histogram transformation [J]. Computer Graphics and Image Processing, 1977, 6(2): 184–195.

    Article  Google Scholar 

  2. BUCHSBAUM G. A spatial processor model for object colour perception [J]. Journal of the Franklin Institute, 1980, 310(1): 1–26.

    Article  Google Scholar 

  3. PIZER S M, JOHNSTON R E, ERICKSEN J P, et al. Contrast-limited adaptive histogram equalization: Speed and effectiveness [C]//First Conference on Visualization in Biomedical Computing. Atlanta: IEEE, 2002: 337–345.

    Google Scholar 

  4. LIU Y C, CHAN W H, CHEN Y Q. Automatic white balance for digital still camera [J]. IEEE Transactions on Consumer Electronics, 1995, 41(3): 460–466.

    Article  Google Scholar 

  5. SINGH G, JAGGI N, VASAMSETTI S, et al. Underwater image/video enhancement using wavelet based color correction (WBCC) method [C]//2015 IEEE Underwater Technology. Chennai: IEEE, 2015: 1–5.

    Google Scholar 

  6. ANCUTI C, ANCUTI C O, HABER T, et al. Enhancing underwater images and videos by fusion [C]//2012 IEEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 81–88.

    Chapter  Google Scholar 

  7. FU X Y, ZHUANG P X, HUANG Y, et al. A retinex-based enhancing approach for single underwater image [C]//2014 IEEE International Conference on Image Processing. Paris: IEEE, 2014: 4572–4576.

    Google Scholar 

  8. MCGLAMERY B L. A computer model for underwater camera systems [C]//Proceedings of SPIE, 1980, 0208: 221–231.

    Article  Google Scholar 

  9. CARLEVARIS-BIANCO N, MOHAN A, EUSTICE R M. Initial results in underwater single image dehazing [C]//OCEANS 2010 MTS/IEEE SEATTLE. Seattle: IEEE, 2010: 1–8.

    Google Scholar 

  10. DREWS P L J Jr, NASCIMENTO E R, BOTELHO S S C, et al. Underwater depth estimation and image restoration based on single images [J]. IEEE Computer Graphics and Applications, 2016, 36(2): 24–35.

    Article  Google Scholar 

  11. PENG Y T, COSMAN P C. Underwater image restoration based on image blurriness and light absorption [J]. IEEE Transactions on Image Processing, 2017, 26(4): 1579–1594.

    Article  MathSciNet  Google Scholar 

  12. SONG W, WANG Y, HUANG D M, et al. A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration [M]//Advances in Multimedia Information Processing–PCM 2018. Cham: Springer, 2018: 678–688.

    Chapter  Google Scholar 

  13. LIU R S, FAN X, HOU M J, et al. Learning aggregated transmission propagation networks for haze removal and beyond [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(10): 2973–2986.

    Article  Google Scholar 

  14. ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks [C]//2017 IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 2242–2251.

    Google Scholar 

  15. LI C Y, GUO J C, GUO C L. Emerging from water: Underwater image color correction based on weakly supervised color transfer [J]. IEEE Signal Processing Letters, 2018, 25(3): 323–327.

    Article  Google Scholar 

  16. KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 1646–1654.

    Google Scholar 

  17. LIU P, WANG G Y, QI H, et al. Underwater image enhancement with a deep residual framework [J]. IEEE Access, 2019, 7: 94614–94629.

    Article  Google Scholar 

  18. ISLAM M J, XIA Y Y, SATTAR J. Fast underwater image enhancement for improved visual perception [J]. IEEE Robotics and Automation Letters, 2020, 5(2): 3227–3234.

    Article  Google Scholar 

  19. LI C Y, ANWAR S, PORIKLI F. Underwater scene prior inspired deep underwater image and video enhancement [J]. Pattern Recognition, 2020, 98: 107038.

    Article  Google Scholar 

  20. CHEN X L, ZHANG P, QUAN L W, et al. Underwater image enhancement based on deep learning and image formation model [DB/OL]. (2021-01-04). http://arxiv.org/abs/2101.00991

  21. NAIK A, SWARNAKAR A, MITTAL K. Shallow-UWnet: Compressed model for underwater image enhancement (student abstract) [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(18): 15853–15854.

    Article  Google Scholar 

  22. YAN K, LIANG L Y, ZHENG Z Q, et al. Medium transmission map matters for learning to restore real-world underwater images [J]. Applied Sciences, 2022, 12(11): 5420.

    Article  Google Scholar 

  23. LI C Y, ANWAR S, HOU J H, et al. Underwater image enhancement via medium transmission-guided multicolor space embedding [J]. IEEE Transactions on Image Processing, 2021, 30: 4985–5000.

    Article  Google Scholar 

  24. ZHANG W D, WANG Y D, LI C Y. Underwater image enhancement by attenuated color channel correction and detail preserved contrast enhancement [J]. IEEE Journal of Oceanic Engineering, 2022, 47(3): 718–735.

    Article  Google Scholar 

  25. ZHUANG P X, WU J M, PORIKLI F, et al. Underwater image enhancement with hyper-laplacian reflectance priors [J]. IEEE Transactions on Image Processing, 2022, 31: 5442–5455.

    Article  Google Scholar 

  26. ZHANG W D, JIN S L, ZHUANG P X, et al. Underwater image enhancement via piecewise color correction and dual prior optimized contrast enhancement [J]. IEEE Signal Processing Letters, 1809, 30: 229–233.

    Article  Google Scholar 

  27. ZHANG W D, ZHUANG P X, SUN H H, et al. Underwater image enhancement via minimal color loss and locally adaptive contrast enhancement [J]. IEEE Transactions on Image Processing, 2022, 31: 3997–4010.

    Article  Google Scholar 

  28. WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [M]//Computer vision–ECCV 2018. Cham: Springer, 2018: 3–19.

    Chapter  Google Scholar 

  29. PARIS S, DURAND F. A fast approximation of the bilateral filter using a signal processing approach [M]//Computer vision–ECCV 2006. Berlin, Heidelberg: Springer, 2006: 568–580.

    Chapter  Google Scholar 

  30. ZHAO H, GALLO O, FROSIO I, et al. Loss functions for image restoration with neural networks [J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47–57.

    Article  Google Scholar 

  31. LI C Y, GUO C L, REN W Q, et al. An underwater image enhancement benchmark dataset and beyond [J]. IEEE Transactions on Image Processing, 2020, 29: 4376–4389.

    Article  Google Scholar 

  32. JAHIDUL ISLAM M, LUO P G, SATTAR J. Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception [DB/DL]. (2020-02-04). https://arxiv.org/abs/2002.01155

  33. AVCIBAS I, SANKUR B, SAYOOD K. Statistical evaluation of image quality measures [J]. Journal of Electronic Imaging, 2002, 11(2): 206–223.

    Article  Google Scholar 

  34. WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: From error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612.

    Article  Google Scholar 

  35. PANETTA K, GAO C, AGAIAN S. Human-visual-system-inspired underwater image quality measures [J]. IEEE Journal of Oceanic Engineering, 2016, 41(3): 541–551.

    Article  Google Scholar 

  36. YANG M, SOWMYA A. An underwater color image quality evaluation metric [J]. IEEE Transactions on Image Processing, 2015, 24(12): 6062–6071.

    Article  MathSciNet  Google Scholar 

  37. WANG Y, LI N, LI Z Y, et al. An imaging-inspired no-reference underwater color image quality assessment metric [J]. Computers & Electrical Engineering, 2018, 70: 904–913.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang  (王燕).

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61863025)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, L., Zhang, J. et al. Global Dense Two-Branch Cascade Network for Underwater Image Enhancement. J. Shanghai Jiaotong Univ. (Sci.) (2024). https://doi.org/10.1007/s12204-024-2735-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-024-2735-y

Keywords

关键词

CLC number

Document code

Navigation