Skip to main content
Log in

Fault-Tolerant Dynamical Consensus of Double-Integrator Multi-Agent Systems in the Presence of Asynchronous Self-Sensing Function Failures

异步自我感知功能失效下双积分多智能体系统的容错动态一致性

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Double-integrator multi-agent systems (MASs) might not achieve dynamical consensus, even if only partial agents suffer from self-sensing function failures (SSFFs). SSFFs might be asynchronous in real engineering application. The existing fault-tolerant dynamical consensus protocol suitable for synchronous SSFFs cannot be directly used to tackle fault-tolerant dynamical consensus of double-integrator MASs with partial agents subject to asynchronous SSFFs. Motivated by these facts, this paper explores a new fault-tolerant dynamical consensus protocol suitable for asynchronous SSFFs. First, multi-hop communication together with the idea of treating asynchronous SSFFs as multiple piecewise synchronous SSFFs is used for recovering the connectivity of network topology among all normal agents. Second, a fault-tolerant dynamical consensus protocol is designed for double-integrator MASs by utilizing the history information of an agent subject to SSFF for computing its own state information at the instants when its minimum-hop normal neighbor set changes. Then, it is theoretically proved that if the strategy of network topology connectivity recovery and the fault-tolerant dynamical consensus protocol with proper time-varying gains are used simultaneously, double-integrator MASs with all normal agents and all agents subject to SSFFs can reach dynamical consensus. Finally, comparison numerical simulations are given to illustrate the effectiveness of the theoretical results.

摘要

即使仅有部分智能体遭受自我感知功能失效, 双积分多智能体系统也可能无法实现动态一致性; 在实际应用中, 自我感知功能失效可能是异步的; 已经存在的适用于同步自我感知功能失效的容错动态一致性协议不能直接应用到异步自我感知功能失效下的动态一致性当中。考虑到这些事实, 本文试图设计一个新的适用于异步自我感知功能失效的容错动态一致性协议。首先, 使用多跳通信技术及异步自我感知功能失效分解思想来恢复正常智能体之间网络拓扑的连通性。 接着, 通过使用失效智能体的历史信息来计算它在其最短跳数正常邻集发生改变的时刻的状态信息, 提出了一个新的容错动态一致性协议。然后, 理论上证得: 使用所提的网络拓扑连通性恢复策略以及带有恰当时变增益的容错动态一致性协议, 包含所有正常智能体与所有失效智能体的双积分多智能体系统能够实现动态一致性。最后, 对比数值仿真验证了理论结果的有效性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YANG Y Z, CHEN Y Y, YANG H Y. Robust flocking of multiple intelligent agents with multiple disturbances [J]. International Journal of Intelligent Systems, 2022, 37(10): 7571–7583.

    Article  Google Scholar 

  2. DE S, SAHOO S R, WAHI P. A rendezvous strategy with R2 reachability for kinematic agents [J]. IEEE Transactions on Automatic Control, 2021, 66(1): 369–374.

    Article  MathSciNet  Google Scholar 

  3. ZHU G L, LIU K X, GU H B, et al. Observer-based event-triggered formation control of multi-agent systems with switching directed topologies [J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2022, 69(3): 1323–1332.

    Article  Google Scholar 

  4. LIU C D, NIU B, LIU L, et al. Event-triggered adaptive bipartite asymptotic tracking control using intelligent technique for stochastic nonlinear multiagent systems [J]. IEEE Transactions on Artificial Intelligence, 2023, 4(6): 1616–1626.

    Article  Google Scholar 

  5. YANG Y H, HU W F. Containment control of doubleintegrator multi-agent systems with time-varying delays [J]. IEEE Transactions on Network Science and Engineering, 2022, 9(2): 457–466.

    Article  MathSciNet  Google Scholar 

  6. YU X, SU R. Decentralized circular formation control of nonholonomic mobile robots under a directed sensor graph [J]. IEEE Transactions on Automatic Control, 2023, 68(6): 3656–3663.

    Article  MathSciNet  Google Scholar 

  7. WANG F K, HUANG J L, LOW K H, et al. AGDS: Adaptive goal-directed strategy for swarm drones flying through unknown environments [J]. Complex & Intelligent Systems, 2023, 9(2): 2065–2080.

    Article  Google Scholar 

  8. NURELLARI E, MCLERNON D, GHOGHO M. Distributed two-step quantized fusion rules via consensus algorithm for distributed detection in wireless sensor networks [J]. IEEE Transactions on Signal and Information Processing Over Networks, 2016, 2(3): 321–335.

    Article  MathSciNet  Google Scholar 

  9. SHI F R, TUO X G, RAN L L, et al. Fast convergence time synchronization in wireless sensor networks based on average consensus [J]. IEEE Transactions on Industrial Informatics, 2020, 16(2): 1120–1129.

    Article  Google Scholar 

  10. ZHANG Y, RAHBARI-ASR N, DUAN J, et al. Day-ahead smart grid cooperative distributed energy scheduling with renewable and storage integration [J]. IEEE Transactions on Sustainable Energy, 2016, 7(4): 1739–1748.

    Article  Google Scholar 

  11. WUTHISHUWONG C, TRAECHTLER A. Distributed control system architecture for balancing and stabilizing traffic in the network of multiple autonomous intersections using feedback consensus and route assignment method [J]. Complex & Intelligent Systems, 2020, 6(1): 165–187.

    Article  Google Scholar 

  12. LI Y J, TAN C. A survey of the consensus for multiagent systems [J]. Systems Science & Control Engineering, 2019, 7(1): 468–482.

    Article  Google Scholar 

  13. YANG H, HAN Q L, GE X H, et al. Fault-tolerant cooperative control of multiagent systems: A survey of trends and methodologies [J]. IEEE Transactions on Industrial Informatics, 2020, 16(1): 4–17.

    Article  Google Scholar 

  14. ZHANG D, FENG G, SHI Y, et al. Physical safety and cyber security analysis of multi-agent systems: A survey of recent advances [J]. IEEE/CAA Journal of Automatica Sinica, 2021, 8(2): 319–333.

    Article  MathSciNet  Google Scholar 

  15. HE W L, XU W Y, GE X H, et al. Secure control of multiagent systems against malicious attacks: A brief survey [J]. IEEE Transactions on Industrial Informatics, 2022, 18(6): 3595–3608.

    Article  Google Scholar 

  16. AMIRKHANI A, BARSHOOI A H. Consensus in multi-agent systems: A review [J]. Artificial Intelligence Review, 2022, 55(5): 3897–3935.

    Article  Google Scholar 

  17. GAO C, HE X, DONG H L, et al. A survey on fault-tolerant consensus control of multi-agent systems: Trends, methodologies and prospects [J]. International Journal of Systems Science, 2022, 53(13): 2800–2813.

    Article  MathSciNet  Google Scholar 

  18. ISHII H, WANG Y, FENG S. An overview on multiagent consensus under adversarial attacks [J]. Annual Reviews in Control, 2022, 53: 252–272.

    Article  MathSciNet  Google Scholar 

  19. REN W, ATKINS E. Distributed multi-vehicle coordinated control via local information exchange [J]. International Journal of Robust and Nonlinear Control, 2007, 17(10/11): 1002–1033.

    Article  MathSciNet  Google Scholar 

  20. WU Z H, XIE L B. Fault-tolerant dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure [C]//2022 6th International Conference on Automation, Control and Robots. Shanghai: IEEE, 2022: 137–141.

    Google Scholar 

  21. WU Z H, XIE L B. Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure [J]. Chinese Physics B, 2022, 31(12): 128902.

    Article  Google Scholar 

  22. CHEN C, LEWIS F L, XIE S L, et al. Resilient adaptive and H ∞ controls of multi-agent systems under sensor and actuator faults [J]. Automatica, 2019, 102: 19–26.

    Article  MathSciNet  Google Scholar 

  23. YAN B, WU C F, SHI P. Formation consensus for discrete-time heterogeneous multi-agent systems with link failures and actuator/sensor faults [J]. Journal of the Franklin Institute, 2019, 356(12): 6547–6570.

    Article  MathSciNet  Google Scholar 

  24. SUN Y R, XIA Y X, ZHANG J, et al. Adaptive fault-tolerant output regulation of linear multi-agent systems with sensor faults [J]. IEEE Access, 2020, 8: 159440–159448.

    Article  Google Scholar 

  25. CAO L, LI H Y, DONG G W, et al. Event-triggered control for multiagent systems with sensor faults and input saturation [J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51(6): 3855–3866.

    Article  Google Scholar 

  26. DONG G W, LI X M, YAO D Y, et al. Command filtered fixed-time control for a class of multi-agent systems with sensor faults [J]. International Journal of Robust and Nonlinear Control, 2021, 31(18): 9588–9603.

    Article  MathSciNet  Google Scholar 

  27. SUNDARAM S, HADJICOSTIS C N. Distributed function calculation and consensus using linear iterative strategies [J]. IEEE Journal on Selected Areas in Communications, 2008, 26(4): 650–660.

    Article  Google Scholar 

  28. SUNDARAM S, HADJICOSTIS C N. Distributed function calculation via linear iterative strategies in the presence of malicious agents [J]. IEEE Transactions on Automatic Control, 2011, 56(7): 1495–1508.

    Article  MathSciNet  Google Scholar 

  29. PASQUALETTI F, BICCHI A, BULLO F. Consensus computation in unreliable networks: A system theoretic approach [J]. IEEE Transactions on Automatic Control, 2012, 57(1): 90–104.

    Article  MathSciNet  Google Scholar 

  30. WU Y M, HE X X, LIU S, et al. Consensus of discrete-time multi-agent systems with adversaries and time delays [J]. International Journal of General Systems, 2014, 43(3/4): 402–411.

    Article  MathSciNet  Google Scholar 

  31. JIN Z P, MURRAY R M. Multi-hop relay protocols for fast consensus seeking [C]//Proceedings of the 45th IEEE Conference on Decision and Control. San Diego: IEEE, 2006: 1001–1006.

    Chapter  Google Scholar 

  32. YUAN D M, XU S Y, ZHAO H Y, et al. Accelerating distributed average consensus by exploring the information of second-order neighbors [J]. Physics Letters A, 2010, 374(24): 2438–2445.

    Article  Google Scholar 

  33. LU J, TANG C Y. Controlled hopwise averaging and its convergence rate [J]. IEEE Transactions on Automatic Control, 2012, 57(4): 1005–1012.

    Article  MathSciNet  Google Scholar 

  34. RONG L N, XU S Y, ZHANG B Y, et al. Accelerating average consensus by using the information of second-order neighbours with communication delays [J]. International Journal of Systems Science, 2013, 44(6): 1181–1188.

    Article  MathSciNet  Google Scholar 

  35. PAN H, NIAN X H, GUO L. Second-order consensus in multi-agent systems based on second-order neighbours’ information [J]. International Journal of Systems Science, 2014, 45(5): 902–914.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihai Wu  (吴治海).

Ethics declarations

Conflict of Interest The authors declare that they have no conflict of interest.

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61876073), and the Fundamental Research Funds for the Central Universities of China (No. JUSRP21920)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Xie, L. Fault-Tolerant Dynamical Consensus of Double-Integrator Multi-Agent Systems in the Presence of Asynchronous Self-Sensing Function Failures. J. Shanghai Jiaotong Univ. (Sci.) (2024). https://doi.org/10.1007/s12204-024-2716-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-024-2716-1

Keywords

关键词

CLC number

Document code

Navigation