Skip to main content
Log in

Real-Time Slice-to-Volume Registration-Based Autonomous Navigation for Robot-Assisted Thyroid Biopsy

用于机器人辅助甲状腺活检的基于实时切片到体积配准的自主导航

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

With advancements in medical imaging and robotic technology, the idea of fully autonomous diagnosis and treatment has become appealing, from ethereal to tangible. Owing to its characteristics of non-invasiveness, non-radiation, and fast imaging speed, ultrasonography has been increasingly used in clinical practice, such as in obstetrics, gynecology, and surgical puncture. In this paper, we propose a real-time image-based visual servo control scheme using a hybrid slice-to-volume registration method. In this manner, the robot can autonomously locate the ultrasound probe to the desired posture according to preoperational planning, even in the presence of disturbances. The experiments are designed and conducted using a thyroid biopsy phantom model. The results show that the proposed scheme can achieve a refresh rate of up to 30 Hz and a tracking accuracy of (0.52±0.65) mm.

摘要

随着医学成像和机器人技术的进步, 完全自动诊断治疗的想法变得越来越有吸引力. 超声检查具有无创、 无辐射、 成像速度快等特点, 越来越多地被应用于临床, 如妇产科、 外科穿刺等. 在本文中, 我们提出了一种使用混合切片到体积配准方法的基于实时图像的视觉伺服控制方案. 以这种方式, 即使在存在干扰的情况下, 机器人也可以根据术前计划自主将超声探头定位到所需的姿态. 我们使用了甲状腺活检模体模型来设计和进行实验. 结果表明, 本文所提出的方案可以实现高达 30 Hz 的刷新率和 (0.52±0.65) mm 的跟踪精度.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CHAN V, PERLAS A. Basics of ultrasound imaging [M]//Atlas of ultrasound-guided procedures in interventional pain management. New York: Springer, 2011: 13–19.

    Chapter  Google Scholar 

  2. HARRISON G, HARRIS A. Work-related musculoskeletal disorders in ultrasound: Can You reduce risk? [J]. Ultrasound, 2015, 23(4): 224–230.

    Article  Google Scholar 

  3. MUIR M, HRYNKOW P, CHASE R, et al. The nature, cause, and extent of occupational musculoskeletal injuries among sonographers [J]. Journal of Diagnostic Medical Sonography, 2004, 20(5): 317–325.

    Article  Google Scholar 

  4. DE OLIVEIRA FILHO G R. The construction of learning curves for basic skills in anesthetic procedures: An application for the cumulative sum method [J]. Anesthesia and Analgesia, 2002, 95(2): 411–416.

    Article  Google Scholar 

  5. NING C P, JI X L, WANG H Q, et al. Association between the sonographer’s experience and diagnostic performance of IOTA simple rules [J]. World Journal of Surgical Oncology, 2018, 16(1): 1–7.

    Article  Google Scholar 

  6. WANG H X, LI R, CHEN X, et al. Remote intelligent assisted diagnosis system for hepatic echinococcosis [M]//Medical ultrasound, and preterm, perinatal and paediatric image analysis. Cham: Springer International Publishing, 2020: 3–12.

    Chapter  Google Scholar 

  7. HUANG Q H, LAN J L. Remote control of a robotic prosthesis arm with six-degree-of-freedom for ultrasonic scanning and three-dimensional imaging [J]. Biomedical Signal Processing and Control, 2019, 54: 101606.

    Article  Google Scholar 

  8. SARTORI E, TADIELLO C, SECCHI C, et al. Teleechography using a two-layer teleoperation algorithm with energy scaling [C]//2019 International Conference on Robotics and Automation. Montreal: IEEE, 2019: 1569–1575.

    Google Scholar 

  9. MARCHAL M, TROCCAZ J. A one-DOF freehand haptic device for robotic tele-echography [J]. Studies in Health Technology and Informatics, 2004, 98: 231–233.

    Google Scholar 

  10. KAMINSKI J T, RAFATZAND K, ZHANG H K. Feasibility of robot-assisted ultrasound imaging with force feedback for assessment of thyroid diseases [J]. Proceedings of SPIE, 2020, 11315: 113151D.

    Google Scholar 

  11. NADEAU C, KRUPA A. Intensity-based ultrasound visual servoing: Modeling and validation with 2-D and 3-D probes [J]. IEEE Transactions on Robotics, 2013, 29(4): 1003–1015.

    Article  Google Scholar 

  12. NAKADATE R, SOLIS J, TAKANISHI A, et al. Out-of-plane visual servoing method for tracking the carotid artery with a robot-assisted ultrasound diagnostic system [C]//2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011: 5267–5272.

    Google Scholar 

  13. HUANG Y W, XIAO W, WANG C Y, et al. Towards fully autonomous ultrasound scanning robot with imitation learning based on clinical protocols [J]. IEEE Robotics and Automation Letters, 2021, 6(2): 3671–3678.

    Article  Google Scholar 

  14. KRUPA A, FOLIO D, NOVALESC, et al. Robotized tele-echography: An assisting visibility tool to support expert diagnostic [J]. IEEE Systems Journal, 2014, 10(3): 974–983.

    Article  Google Scholar 

  15. JIANG Z L, DANIS N, BI Y, et al. Precise repositioning of robotic ultrasound: Improving registration-based motion compensation using ultrasound confidence optimization [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1–11.

    Google Scholar 

  16. ZHANG S H, JIANG S, YANG Z Y, et al. An ultrasound image navigation robotic prostate brachytherapy system based on US to MRI deformable image registration method [J]. Hellenic Journal of Nuclear Medicine, 2016, 19(3): 223–230.

    Google Scholar 

  17. ZHANG S H, JIANG S, YANG Z Y, et al. 2D ultrasound and 3D MR image registration of the prostate for brachytherapy surgical navigation [J]. Medicine, 2015, 94(40): e1643.

    Article  Google Scholar 

  18. ESTEBAN J, SIMSON W, WITZIG S R, et al. Robotic ultrasound-guided facet joint insertion [J]. International Journal of Computer Assisted Radiology and Surgery, 2018, 13(6): 895–904.

    Article  Google Scholar 

  19. ZETTINIG O, FUERST B, KOJCEV R, et al. Toward real-time 3D ultrasound registration-based visual servoing for interventional navigation [C]//2016 IEEE International Conference on Robotics and Automation. Stockholm: IEEE, 2016: 945–950.

    Google Scholar 

  20. LASSO A, HEFFTER T, RANKIN A, et al. PLUS: Open-source toolkit for ultrasound-guided intervention systems [J]. IEEE Transactions on Biomedical Engineering, 2014, 61(10): 2527–2537.

    Article  Google Scholar 

  21. RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation [M]//Medical image computing and computerassisted intervention - MICCAI 2015. Cham: Springer, 2015: 234–241.

    Chapter  Google Scholar 

  22. WANG Q. GMM-based hidden markov random field for color image and 3D volume segmentation [DB/OL]. (2012-12-18). https://arxiv.org/abs/1212.4527

  23. FERRANTE E, PARAGIOS N. Slice-to-volume medical image registration: A survey [J]. Medical Image Analysis, 2017, 39: 101–123.

    Article  Google Scholar 

  24. MARAMI B, SIROUSPOUR S, CAPSON D W. Model-based 3D/2D deformable registration of MR images [C]//2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Boston: IEEE, 2011: 4880–4883.

    Google Scholar 

  25. MOCKUS J. The Bayesian approach to global optimization [M]//System modeling and optimization. Berlin/Heidelberg: Springer-Verlag, 2005: 473–481.

    Google Scholar 

  26. SRINIVAS N, KRAUSE A, KAKADE S M, et al. Gaussian process optimization in the bandit setting: No regret and experimental design [DB/OL]. (2009-12-21). https://arxiv.org/abs/0912.3995

  27. NELDER J A, MEAD R. A simplex method for function minimization [J]. The Computer Journal, 1965, 7(4): 308–313.

    Article  MathSciNet  MATH  Google Scholar 

  28. CHAUMETTE F, HUTCHINSON S. Visual servo control. I. basic approaches [J]. IEEE Robotics & Automation Magazine, 2006, 13(4): 82–90.

    Article  Google Scholar 

  29. MALIS E, CHAUMETTE F, BOUDET S. 2 1/2 D visual servoing [J]. IEEE Transactions on Robotics & Automation, 1999, 15(2): 238–250.

    Article  Google Scholar 

  30. ALBU-SCHAFFER A, OTT C, FRESE U, et al. Cartesian impedance control of redundant robots: Recent results with the DLR-light-weight-arms [C]//2003 IEEE International Conference on Robotics and Automation. Taipei: IEEE, 2003: 3704–3709.

    Google Scholar 

  31. PRAGER R W, ROHLING R N, GEE A H, et al. Rapid calibration for 3-D freehand ultrasound [J]. Ultrasound in Medicine & Biology, 1998, 24(6): 855–869.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenglong Sun  (孙正隆).

Additional information

Foundation item: the Shenzhen Science and Technology Program (No. RCYX20200714114736115), and the Longgang District Medical and Health Science and Technology Project of Shenzhen (No. LGWJ2021-036)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, X., Zhong, M. et al. Real-Time Slice-to-Volume Registration-Based Autonomous Navigation for Robot-Assisted Thyroid Biopsy. J. Shanghai Jiaotong Univ. (Sci.) 28, 330–338 (2023). https://doi.org/10.1007/s12204-023-2606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2606-y

Key words

关键词

CLC number

Document code

Navigation