Skip to main content
Log in

Novel Scheme for Essential Proteins Identification Based on Improved Multicriteria Decision Making

基于改进多准则决策的关键蛋白质识别方案

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Identifying essential proteins from protein-protein interaction networks is important for studies on biological evolution and new drug’s development. Most of the presented criteria for prioritizing essential proteins only focus on a certain attribute of the proteins in the network, which suffer from information loss. In order to overcome this problem, a relatively comprehensive and effective novel method for essential proteins identification based on improved multicriteria decision making (MCDM), called essential proteins identification-technique for order preference by similarity to ideal solution (EPI-TOPSIS), is proposed. First, considering different attributes of proteins, we propose three methods from different aspects to evaluate the significance of the proteins: gene-degree centrality (GDC) for gene expression sequence; subcellular-neighbor-degree centrality (SNDC) and subcellular-in-degree centrality (SIDC) for subcellular location information and protein complexes. Then, betweenness centrality (BC) and these three methods are considered together as the multiple criteria of the decision-making model. Analytic hierarchy process is used to evaluate the weights of each criterion, and the essential proteins are prioritized by an ideal solution of MCDM, i.e., TOPSIS. Experiments are conducted on YDIP, YMIPS, Krogan and BioGRID networks. The results indicate that EPI-TOPSIS outperforms several state-of-the-art approaches for identifying the essential proteins through the performance measures.

摘要

从蛋白质相互作用网络中识别关键蛋白质对生物进化和新药物研制具有重要意义. 目前许多蛋白质关键性的评判标准只关注蛋白质的某个属性, 这会有信息丢失的问题. 针对这一问题, 本文提出一种基于改进多准则决策的更全面有效的关键蛋白质鉴定方法(EPI-TOPSIS). 首先, 考虑蛋白质的不同属性, 从三个不同的方面来评估蛋白质重要性: 基于表达序列的基因度中心性; 基于定位信息和蛋白质复合物的亚细胞-邻居度中心性与亚细胞-复合物入度中心性. 然后将介数中心性与这三种方法一起考虑作为多准则决策模型的属性准则, 采用层次分析法赋予各个准则权重, 通过多准则决策的逼近理想距离求解蛋白质关键性, 并对蛋白质进行优先级排序. 最后, 在YDIP、 YMIPS、 Krogan和BioGRID网络上进行实验, 结果表明EPI-TOPSIS性能优于对比算法.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KAMATH R S, FRASER A G, DONG Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi [J]. Nature, 2003, 421(6920): 231–237.

    Google Scholar 

  2. WINZELER A, SHOEMAKER D D, ASTROMOFF A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis [J]. The EMBO Journal, 1999, 285(5429): 901–906.

    Google Scholar 

  3. JEONG H, MASON S P, BARABÁSI A L, et al. Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41–42.

    Google Scholar 

  4. JIMENEZ-SANCHEZ G, CHILDS B, VALLE D. Human disease genes [J]. Nature, 2001, 409(6822): 853–855.

    Google Scholar 

  5. GILL N, SINGH S, ASERI T C. Computational disease gene prioritization: An appraisal [J]. Journal of Computational Biology, 2014, 21(6): 456–465.

    MathSciNet  Google Scholar 

  6. GIAEVER G, CHU A M, NI L, et al. Functional profiling of the saccharomyces cerevisiae genome [J]. Nature, 2002, 418(6896): 387–391.

    Google Scholar 

  7. CULLEN L M, ARNDT G M. Genome-wide screening for gene function using RNAi in mammalian cells [J]. Immunology and Cell Biology, 2005, 83(3): 217–223.

    Google Scholar 

  8. ROEMER T, JIANG B, DAVISON J, et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery [J]. Molecular Microbiology, 2003, 50(1): 167–181.

    Google Scholar 

  9. JEONG H, MASON S P, BARABÁSI A L, et al. Lethality and centrality in protein networks [J]. Nature, 2001, 411(6833): 41–42.

    Google Scholar 

  10. FREEMAN L C. Centrality in social networks conceptual clarification [J]. Social Networks, 1978, 1(3): 215–239.

    Google Scholar 

  11. JOY M P, BROCK A, INGBER D E, et al. High-betweenness proteins in the yeast protein interaction network [J]. Journal of Biomedicine and Biotechnology, 2005, 2005: 594674.

    Google Scholar 

  12. WUCHTY S, STADLER P F. Centers of complex networks [J]. Journal of Theoretical Biology, 2003, 223(1): 45–53.

    MathSciNet  MATH  Google Scholar 

  13. ESTRADA E, RODRÍGUEZ-VELÁZQUEZ J A. Subgraph centrality in complex networks [J]. Physical Review E, 2005, 71(5): 056103.

    MathSciNet  Google Scholar 

  14. BONACICH P. Power and centrality: A family of measures [J]. American Journal of Sociology, 1987, 92(5): 1170–1182.

    Google Scholar 

  15. LI M, WANG J X, CHEN X, et al. A local average connectivity-based method for identifying essential proteins from the network level [J]. Computational Biology and Chemistry, 2011, 35(3): 143–150.

    MathSciNet  MATH  Google Scholar 

  16. WANG J X, LI M, WANG H, et al. Identification of essential proteins based on edge clustering coefficient [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2012, 9(4): 1070–1080.

    MathSciNet  Google Scholar 

  17. NIE T Y, GUO Z, ZHAO K, et al. Using mapping entropy to identify node centrality in complex networks [J]. Physica A: Statistical Mechanics and Its Applications, 2016, 453: 290–297.

    Google Scholar 

  18. HSING M, BYLER K G, CHERKASOV A. The use of Gene Ontology terms for predicting highly-connected ‘hub’ nodes in protein-protein interaction networks [J]. BMC systems biology, 2008, 2(1): 80–80.

    Google Scholar 

  19. LEI X J, ZHAO J, FUJITA H, et al. Predicting essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets [J]. Knowledge-Based Systems, 2018, 151: 136–148.

    Google Scholar 

  20. XIAO Q H, WANG J X, PENG X Q, et al. Identifying essential proteins from active PPI networks constructed with dynamic gene expression [J]. BMC Genomics, 2015, 16(Suppl3): S1.

    Google Scholar 

  21. NEPUSZ T, YU H Y, PACCANARO A. Detecting overlapping protein complexes in protein-protein interaction networks [J]. Nature Methods, 2012, 9(5): 471–472.

    Google Scholar 

  22. ZHANG W, XU J, LI X, et al. A new method for identifying essential proteins by measuring co-expression and functional similarity [J]. IEEE Transactions on Nanobioscience, 2016, 15(8): 939–945.

    Google Scholar 

  23. LI M, LU Y, NIU Z B, et al. United complex centrality for identification of essential proteins from PPI networks [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2017, 14(2): 370–380.

    Google Scholar 

  24. LUO J, QI Y. Identification of essential proteins based on a new combination of local interaction density and protein complexes [J]. PLoS ONE, 2015, 10(6): e0131418.

    Google Scholar 

  25. LI M, ZHANG H H, WANG J X, et al. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data [J]. BMC Systems Biology, 2012, 6: 15.

    Google Scholar 

  26. TANG X W, WANG J X, ZHONG J C, et al. Predicting essential proteins based on weighted degree centrality [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2014, 11(2): 407–418.

    Google Scholar 

  27. LUO J, MA L. A new integration-centric algorithm of identifying essential proteins based on topology structure of protein-protein interaction network and complex information [J]. Current Bioinformatics, 2013, 8(3): 380–385.

    Google Scholar 

  28. LU P, YU J. A mixed clustering coefficient centrality for identifying essential proteins [J]. International Journal of Modern Physics B, 2020, 34(10): 5–9.

    MathSciNet  Google Scholar 

  29. LEI X, YANG X, FUJITA H. Random walk based method to identify essential proteins by integrating network topology and biological characteristics [J]. Knowledge Based Systems, 2019, 167: 53–67.

    Google Scholar 

  30. LEI X J, YANG X Q, WU F X. Artificial fish swarm optimization based method to identify essential proteins [J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(2): 495–505.

    Google Scholar 

  31. ZENG M, LI M, WU F X, et al. DeepEP: A deep learning framework for identifying essential proteins [J]. BMC Bioinformatics, 2019, 20(Suppl16): 506.

    Google Scholar 

  32. TZENG G, HUANG J. Multiple attribute decision making: Methods and applications [M]//Boca Raton: CRC Press, 2011.

    MATH  Google Scholar 

  33. DENG Y, CHAN F T S, WU Y, et al. A new linguistic MCDM method based on multiple-criterion data fusion [J]. Expert Systems with Applications, 2011, 38(6): 6985–6993.

    Google Scholar 

  34. ABO-SINNA M A, AMER A H, IBRAHIM A S. Extensions of TOPSIS for large scale muti-objective nonliner programming problems with block angular structure [J]. Applied Mathematical Modelling, 2008, 32(3): 292–302.

    MATH  Google Scholar 

  35. LEI X J, ZHAO J, FUJITA H, et al. Predicting Essential proteins based on RNA-Seq, subcellular localization and GO annotation datasets [J]. Knowledge-Based Systems, 2018, 151: 136–148.

    Google Scholar 

  36. XENARIOS I, FERNANDEZ E, SALWINSKI L, et al. DIP: The database of interacting proteins: 2001 update [J]. Nucleic Acids Research, 2001, 29(1): 239–241.

    Google Scholar 

  37. MEWES H W, FRISHMAN D, MAYER K F X, et al. MIPS: analysis and annotation of proteins from whole genomes in 2005 [J]. Nucleic Acids Research, 2006, 34(suppl_l): D169–D172.

    Google Scholar 

  38. KROGAN N J, CAGNEY G, YU H Y, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae [J]. Nature, 2006, 440(7084): 637–643.

    Google Scholar 

  39. STARK C, BREITKREUTZ B J, CHATRARYAMONTRI A, et al. The BioGRID Interaction Database: 2011 update [J]. Nucleic Acids Research, 2010, 39(suppl_l): D698–D704.

    Google Scholar 

  40. FRIEDEL C C, KRUMSIEK J, ZIMMER R, et al. Bootstrapping the interactome: Unsupervised identification of protein complexes in yeast [M]//Research in computational molecular biology. Berlin, Heidelberg: Springer, 2008: 3–16.

    Google Scholar 

  41. PU S Y, VLASBLOM J, EMILI A, et al. Identifying functional modules in the physical interactome of Saccharomyces cerevisiae [J]. Proteomics, 2007, 7(6): 944–960.

    Google Scholar 

  42. PU S Y, WONG J, TURNER B, et al. Up-to-date catalogues of yeast protein complexes [J]. Nucleic Acids Research, 2008, 37(3): 825–831.

    Google Scholar 

  43. CHERRY J M, ADLER C, BALL C, et al. SGD: Saccharomyces genome database [J]. Nucleic Acids Research, 1998, 26(1): 73–79.

    Google Scholar 

  44. ZHANG R, LIN Y. DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes [J]. Nucleic Acids Research, 2008, 37(suppl_l): D455–D458.

    Google Scholar 

  45. WINZELER E A, SHOEMAKER D D, ASTROMOFF A, et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis [J]. Science, 1999, 285(5429): 901–906.

    Google Scholar 

  46. BINDER J X, PLETSCHER-FRANKILD S, TSAFOU K, et al. COMPARTMENTS: Unification and visualization of protein subcellular localization evidence [J]. Database, 2014, 2014: bau012.

    Google Scholar 

  47. TU B P, KUDLICKI A, ROWICKA M, et al. Logic of the yeast metabolic cycle: Temporal compartmentalization of cellular processes [J]. Science, 2005, 310(5751): 1152–1158.

    Google Scholar 

  48. HOLMAN A G, DAVIS P J, FOSTER J M. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi [J]. BMC Microbiology, 2009, 9: 243.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengli Lu  (卢鹏丽).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 62162040 and 11861045)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Chen, Y. & Liao, Y. Novel Scheme for Essential Proteins Identification Based on Improved Multicriteria Decision Making. J. Shanghai Jiaotong Univ. (Sci.) 28, 418–431 (2023). https://doi.org/10.1007/s12204-023-2584-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-023-2584-0

Key words

关键词

CLC number

Document code

Navigation