Skip to main content
Log in

Band Structure Characteristics of Two-Dimensional Si-A (Ge, Pb, Sn) Alloy-Air Holes Thermal Crystals

二维Si-A (Ge, Pb, Sn)合金-气孔热晶体的能带结构特征

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This paper designs the thermal crystals composed of alloy materials with air holes and analyzes their properties of band structures, heat transmission, and flux spectra. Thermal crystals composed of Si-A (A=Ge, Sn, Pb) alloys as background materials and air holes with square array are used to construct an elastic-constant periodic structure and their high-frequency phononic band is calculated by deploying finite element methods. Moreover, this paper investigates heat transmission through a finite array of thermally excited phonons and presents the thermal crystal with maximum heat transport. The results show that a wider bandgap could be achieved by increasing the air hole radius and decreasing the lattice constant. In the alloy materials, with increasing atomic radius and thus atomic mass (Ge, Sn, Pb), the frequency range (contributed to thermal conductivity) shifts towards lower frequency. Hence, the bandgap frequencies also shift toward low frequency, but this decreasing rate is not constant or in order, so former may have a faster or slower decreasing rate than the later. Thus, the frequency range for the contribution of heat transportation overlaps with the bandgap frequency range. The development of thermal crystals is promising for managing heat and controlling the propagation of the thermal wave.

摘要

k]本文设计了含气孔的合金热晶体,分析了其能带结构、传热特性和通量光谱。以Si-A (A = Ge, Sn, Pb)合金为背景材料,采用方阵气孔构造弹性常数周期结构的热晶体,采用有限元方法计算了其高频声子带。此外,本文还研究了有限热激发声子阵列的热传输,并给出了热传输最大的热晶体。结果表明,增大气孔半径和减小晶格常数可以获得更宽的带隙。在合金材料中,随着原子半径和原子量(Ge, Sn, Pb)的增加,频率范围向低频移动(有助于导热)。因此,带隙频率也向低频偏移,但这种下降率不是恒定的或有序的,因此前者相较于后者下降率可能或快或慢。因此,热输运贡献的频率范围与带隙频率范围重叠。热晶体在热管理和控制热波传播方面具有广阔的应用前景。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MALDOVAN M. Sound and heat revolutions in phononics [J]. Nature, 2013, 503(7475): 209–217.

    Article  Google Scholar 

  2. PENNEC Y, DJAFARI-ROUHANI B. Fundamental properties of phononic crystal [M]//Phononic crystals. New York: Springer, 2016: 23–50.

    Chapter  Google Scholar 

  3. KUSHWAHA M S, HALEVI P, DOBRZYNSKI L, et al. Acoustic band structure of periodic elastic composites [J]. Physical Review Letters, 1993, 71(13): 2022–2025.

    Article  Google Scholar 

  4. ECONOMOU E N, SIGALAS M. Stop bands for elastic waves in periodic composite materials [J]. The Journal of the Acoustical Society of America, 1994, 95(4): 1734–1740.

    Article  Google Scholar 

  5. GORISHNYY T, MALDOVAN M, ULLAL C, et al. Sound ideas [J]. Physics World, 2005, 18(12): 24–29.

    Article  Google Scholar 

  6. ELFORD D P, CHALMERS L, KUSMARTSEV F V, et al. Matryoshka locally resonant sonic crystal [J]. The Journal of the Acoustical Society of America, 2011, 130(5): 2746–2755.

    Article  Google Scholar 

  7. YANG S X, PAGE J H, LIU Z Y, et al. Ultrasound tunneling through 3D phononic crystals [J]. Physical Review Letters, 2002, 88(10): 104301.

    Article  Google Scholar 

  8. ZHU G H, SWINTECK N Z, WU S T, et al. Direct observation of the phonon dispersion of a three-dimensional solid/solid hypersonic colloidal crystal [J]. Physical Review B, 2013, 88(14): 144307.

    Article  Google Scholar 

  9. MALDOVAN M. Narrow low-frequency spectrum and heat management by thermocrystals [J]. Physical Review Letters, 2013, 110(2): 025902.

    Article  Google Scholar 

  10. KHELIF A, DJAFARI-ROUHANI B, VASSEUR J O, et al. Transmission and dispersion relations of perfect and defect-containing waveguide structures in phononic band gap materials [J]. Physical Review B, 2003, 68(2): 024302.

    Article  Google Scholar 

  11. JOANNOPOULOS J D, VILLENEUVE P R, FAN S H. Photonic crystals: Putting a new twist on light [J]. Nature, 1997, 386(6621): 143–149.

    Article  Google Scholar 

  12. MALDOVAN M. Phonon wave interference and thermal bandgap materials [J]. Nature Materials, 2015, 14(7): 667–674.

    Article  Google Scholar 

  13. ZIMAN J. Electrons and phonons the theory of transport phenomena in solids [M]. Oxford: Oxford University Press, 2001.

    Book  MATH  Google Scholar 

  14. KITTEL C. Introduction to solid state physics [M]. 8th ed. New York: John Wiley & Sons, 2005.

    MATH  Google Scholar 

  15. LUCKYANOVA M N, GARG J, ESFARJANI K, et al. Coherent phonon heat conduction in superlattices [J]. Science, 2012, 338(6109): 936–939.

    Article  Google Scholar 

  16. RAVICHANDRAN J, YADAV A K, CHEAITO R, et al. Crossover from incoherent to coherent phonon scattering in epitaxial oxide superlattices [J]. Nature Materials, 2014, 13(2): 168–172.

    Article  Google Scholar 

  17. SIMKIN M V, MAHAN G D. Minimum thermal conductivity of superlattices [J]. Physical Review Letters, 2000, 84(5): 927–930.

    Article  Google Scholar 

  18. ZEN N, PUURTINEN T A, ISOTALO T J, et al. Engineering thermal conductance using a two-dimensional phononic crystal [J]. Nature Communications, 2014, 5: 3435.

    Article  Google Scholar 

  19. HUSSEIN M I. Reduced Bloch mode expansion for periodic media band structure calculations [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465(2109): 2825–2848.

    Article  MathSciNet  MATH  Google Scholar 

  20. GÓMEZ GARCÍA P, FERNÁNDEZ-ÁLVAREZ J P. Floquet-Bloch theory and its application to the dispersion curves of nonperiodic layered systems [J]. Mathematical Problems in Engineering, 2015, 2015: 475364.

    Article  MATH  Google Scholar 

  21. MOHAMADY S, RAJA AHMAD R K, MONTAZERI A, et al. Modeling and eigenfrequency analysis of sound-structure interaction in a rectangular enclosure with finite element method [J]. Advances in Acoustics and Vibration, 2009, 2009: 371297.

    Article  Google Scholar 

  22. KAFESAKI M, SIGALAS M M, GARCÍA N. Frequency modulation in the transmittivity of wave guides in elastic-wave band-gap materials [J]. Physical Review Letters, 2000, 85(19): 4044–4047.

    Article  Google Scholar 

  23. KHELIF A, DJAFARI-ROUHANI B, VASSEUR J O, et al. Transmittivity through straight and stublike waveguides in a two-dimensional phononic crystal [J]. Physical Review B, 2002, 65(17): 174308.

    Article  Google Scholar 

  24. BERNE P. Thermal conductivity of composites: How comsol revealed an omission in a classical paper [C]//2015 COMSOL Conference. Grenoble: COMSOL, 2015: 1–5.

    Google Scholar 

  25. BILAL O R, HUSSEIN M I. Ultrawide phononic band gap for combined in-plane and out-of-plane waves [J]. Physical Review E, 2011, 84(6): 065701.

    Article  Google Scholar 

  26. DONG H W, SU X X, WANG Y S. Topology optimization of two-dimensional phononic crystals using FEM and genetic algorithm [C]//2012 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications. Shanghai: IEEE, 2012: 45–48.

    Chapter  Google Scholar 

  27. YI G L, SHIN Y C, YOON H, et al. Topology optimization for phononic band gap maximization considering a target driving frequency [J]. JMST Advances, 2019, 1(1/2): 153–159.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Azka  (姜淳).

Additional information

Foundation item

the National Natural Science Foundation of China (No. 61975119)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azka, U., Jiang, C. & Khushik, M.H.A.K. Band Structure Characteristics of Two-Dimensional Si-A (Ge, Pb, Sn) Alloy-Air Holes Thermal Crystals. J. Shanghai Jiaotong Univ. (Sci.) 28, 180–185 (2023). https://doi.org/10.1007/s12204-022-2485-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2485-7

Key words

CLC number

Document code

关键词

Navigation