Skip to main content

Influence of Forming Pressure on Properties of Yttrium Iron Garnet Ferrite

Abstract

The Ca-Sn co-substituted yttrium iron garnet (YIG) ferrite materials were prepared by the traditional oxide solid-state reaction method, and the influence of forming pressure on the density, morphology and magnetic properties of YIG ferrite was systematically studied. The results show that the density of YIG ferrite green body increases with the increase of the forming pressure, while the density of its sintered body shows a trend of first increasing and then decreasing. At the same time, the ferromagnetic resonance (FMR) linewidth of YIG sample first decreases and then increases. Meanwhile, the effects of forming pressure on the saturation magnetization, remanence and coercivity of the sample can be ignored. This study proves that the density and FMR linewidth of YIG materials can be controlled by regulating the forming pressure and the best performance is obtained for the sample prepared under a forming pressure of 5 MPa.

This is a preview of subscription content, access via your institution.

References

  1. GELLER S, GILLEO M A. Structure and ferrimagnetism of yttrium and rare-earth-iron garnets [J]. Acta Crystallographica, 1957, 10(3): 239.

    Article  Google Scholar 

  2. SERGA A A, CHUMAK A V, HILLEBRANDS B. YIG magnonics [J]. Journal of Physics D: Applied Physics, 2010, 43(26): 264002.

    Article  Google Scholar 

  3. MUSA M A, AZIS R S, OSMAN N H, et al. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAlG) nanoferrite via sol-gel synthesis [J]. Results in Physics, 2017, 7: 1135–1142.

    Article  Google Scholar 

  4. MALLMANN E J J, SOMBRA A S B, GOES J C, et al. Yttrium iron garnet: Properties and applications review [J]. Solid State Phenomena, 2013, 202: 65–96.

    Article  Google Scholar 

  5. GANZHORN K, KLINGLER S, WIMMER T, et al. Magnon-based logic in a multi-terminal YIG/Pt nanostructure [J]. Applied Physics Letters, 2016, 109(2): 022405.

    Article  Google Scholar 

  6. HAAS O, DUFAY B, SAEZ S, et al. Sensitivity and noise of a magnetic field sensor based on magnetostatic spin wave YIG device and its integrated electronics [J]. IEEE Sensors Journal, 2020, 20(23): 14148–14156.

    Article  Google Scholar 

  7. NOUREDDINE S, BITAR Z, SROUR A, et al. Synthesis, characterization and magnetic properties of Y3−xSmxFe5O12 [J]. Applied Physics A, 2020, 126(11): 1–7.

    Article  Google Scholar 

  8. YANG Y, YU Z, GUO Q G, et al. Thermomagnetization characteristics and ferromagnetic resonance linewidth broadening mechanism for Ca-Sn Co-substituted YIG ferrites [J]. Ceramics International, 2018, 44(10): 11718–11723.

    Article  Google Scholar 

  9. LI H Y, GUO Y H. Synthesis and characterization of YIG nanoparticles by low temperature sintering [J]. Journal of Materials Science: Materials in Electronics, 2018, 29(11): 9369–9374.

    Google Scholar 

  10. ZHOU N, JIA L J, ZHANG H W. Effect of Bi3+ -Li+-V5+ co-substitution on the structure and properties of low temperature sintered YIG ferrite [J]. Journal of Magnetic Materials and Devices, 2020, 51(5): 6–8 (in Chinese).

    Google Scholar 

  11. CHEN F, LUO H, CHENG Y Z, et al. Investigation of microwave magnetodielectric effect in Yb-substituted yttrium iron garnet [J]. Journal of Magnetic Materials and Devices, 2020, 51(4): 7–13 (in Chinese).

    Google Scholar 

  12. AUNG Y L, IKESUE A, WATANABE T, et al. Bi substituted YIG ceramics isolator for optical communication [J]. Journal of Alloys and Compounds, 2019, 811: 152059.

    Article  Google Scholar 

  13. MAHENDER C, SUMANGALA T P, ADE R, et al. Low-loss YIG thick films for microwave applications [J]. Ceramics International, 2019, 45(4): 4316–4321.

    Article  Google Scholar 

  14. PAIVA D V M, SILVA M A S, RIBEIRO T S, et al. Novel magnetic-dielectric composite ceramic obtained from Y3Fe5O12 and CaTiO3 [J]. Journal of Alloys and Compounds, 2015, 644: 763–769.

    Article  Google Scholar 

  15. JIA N, ZHANG H, HARRIS V G. Iron-depleted Bi-YIG having enhanced gyromagnetic properties suitable for LTCC processing [J]. Journal of the American Ceramic Society, 2019, 102(3): 1180–1191.

    Article  Google Scholar 

  16. HESABI Z R, HAGHIGHATZADEH M, MAZAHERI M, et al. Suppression of grain growth in sub-micrometer alumina via two-step sintering method [J]. Journal of the European Ceramic Society, 2009, 29(8): 1371–1377.

    Article  Google Scholar 

  17. SHONGWE M B, RAMAKOKOVHU M M, DIOUF S, et al. Effect of starting powder particle size and heating rate on spark plasma sintering of FeNi alloys [J]. Journal of Alloys and Compounds, 2016, 678: 241–248.

    Article  Google Scholar 

  18. SHARMA V, KUANR B K. Magnetic and crystallographic properties of rare-earth substituted yttriumiron garnet [J]. Journal of Alloys and Compounds, 2018, 748: 591–600.

    Article  Google Scholar 

  19. VAN P C, SURABHI S, DONGQUOC V, et al. Effect of annealing temperature on surface morphology and ultralow ferromagnetic resonance linewidth of yttrium iron garnet thin film grown by RF sputtering [J]. Applied Surface Science, 2018, 435: 377–383.

    Article  Google Scholar 

  20. SCHLÖMANN E. Spin-wave analysis of ferromagnetic resonance in polycrystalline ferrites [J]. Journal of Physics and Chemistry of Solids, 1958, 6(2/3): 242–256.

    Article  Google Scholar 

  21. SCHLÖMANN E. Ferromagnetic resonance in polycrystalline ferrites with large anisotropy—I: General theory and application to cubic materials with a negative anisotropy constant [J]. Journal of Physics and Chemistry of Solids, 1958, 6(2/3): 257–266.

    Article  Google Scholar 

  22. LLABRÉS J, NICOLAS J, SROUSSI R. Effect of the vanadium substitution on the magnetic properties of cobalt doped yttrium-gadolinium iron garnets [J]. Applied Physics, 1977, 12(1): 87–91.

    Article  Google Scholar 

  23. HAN Z Q, ZHANG F Y. Influence of surface-roughness and temperature on the ferromagnetic resonance linewidth of polycrystalline garnet [J]. Journal of Magnetic Materials and Devices, 2017, 48(1): 20–23 (in Chinese).

    MathSciNet  Google Scholar 

  24. FAKHRUL T, TAZLARU S, BERAN L, et al. Magneto-optical Bi: YIG films with high figure of merit for nonreciprocal photonics [J]. Advanced Optical Materials, 2019, 7(13): 1900056.

    Article  Google Scholar 

  25. DIONNE G F. On the origin of magnetic inhomogeneity in Ca2+ 2V5+-substituted garnets [J]. Materials Research Bulletin, 1972, 7(12): 1393–1401.

    Article  Google Scholar 

  26. AKHTAR M N, YOUSAF M, KHAN S N, et al. Structural and electromagnetic evaluations of YIG rare earth doped (Gd, Pr, Ho, Yb) nanoferrites for high frequency applications [J]. Ceramics International, 2017, 43(18): 17032–17040.

    Article  Google Scholar 

  27. HOSSEINZADEH S, BEHBOUDNIA M, JAMILPANAH L, et al. High saturation magnetization, low coercivity and fine YIG nanoparticles prepared by modifying co-precipitation method [J]. Journal of Magnetism and Magnetic Materials, 2019, 476: 355–360.

    Article  Google Scholar 

  28. XUE D S, CHAI G Z, LI X L, et al. Effects of grain size distribution on coercivity and permeability of ferromagnets [J]. Journal of Magnetism and Magnetic Materials, 2008, 320(8): 1541–1543.

    Article  Google Scholar 

  29. AMIGHIAN J, HASANPOUR A, MOZAFFARI M. The effect of Bi mole ratio on phase formation in BixY3−xFe5O12 nanoparticles [J]. Physica Status Solidi (c), 2004, 1(7): 1769–1771.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haihua Li.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Li, H. Influence of Forming Pressure on Properties of Yttrium Iron Garnet Ferrite. J. Shanghai Jiaotong Univ. (Sci.) (2022). https://doi.org/10.1007/s12204-022-2478-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12204-022-2478-6

Key words

  • yttrium iron garnet (YIG) ferrite
  • oxide solid-state reaction method
  • forming pressure
  • density
  • ferromagnetic resonance (FMR) linewidth

CLC number

  • TM 277+.3

Document code

  • A