Skip to main content
Log in

Improved Nonsingular Fast Terminal Sliding Mode Control of Unmanned Underwater Hovering Vehicle

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

An improved nonsingular fast terminal sliding mode manifold based on scaled state error is proposed in this paper. It can significantly accelerate the convergence rate of the state error which is initially far from the origin and achieve the fixed-time convergence. In addition, conventional double power term based reaching law is improved to ensure the convergence of sliding state in the presence of disturbances. The proposed approach is applied to the hovering control of an unmanned underwater vehicle. The controller exhibits both fast convergence and strong robustness to model uncertainty and external disturbances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. YUH J. Design and control of autonomous underwater robots: A survey [J]. Autonomous Robots, 2000, 8(1): 7–24.

    Article  Google Scholar 

  2. YOERGER D, SLOTINE J. Robust trajectory control of underwater vehicles [J]. IEEE Journal of Oceanic Engineering, 1985, 10(4): 462–470.

    Article  Google Scholar 

  3. ISHAQUE K, ABDULLAH S S, AYOB S M, et al. A simplified approach to design fuzzy logic controller for an underwater vehicle [J]. Ocean Engineering, 2011, 38(1): 271–284.

    Article  Google Scholar 

  4. LEABOURNE K N, ROCK S M, FLEISCHER S D, et al. Station keeping of an ROV using vision technology [C]//Oceans’97. MTS/IEEE Conference Proceedings. Halifax, NS: IEEE, 1997: 634–640.

    Chapter  Google Scholar 

  5. YUH J. A neural net controller for underwater robotic vehicles [J]. IEEE Journal of Oceanic Engineering, 1990, 15(3): 161–166.

    Article  Google Scholar 

  6. QIAN Y, FENG Z P, BI A Y, et al. T-S fuzzy modelbased depth control of underwater vehicles [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(3): 315–324.

    Article  Google Scholar 

  7. WANG J S, LEE C S G, YUH J. Self-adaptive neuro-fuzzy systems with fast parameter learning for autonomous underwater vehicle control [C]//Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. San Francisco, CA: IEEE, 2000: 3861–3866.

    Google Scholar 

  8. KIM T W, YUH J. A novel neuro-fuzzy controller for autonomous underwater vehicles [C]//Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation. Seoul: IEEE, 2001: 2350–2355.

    Google Scholar 

  9. ŠABANOVIC A. Variable structure systems with sliding modes in motion control — A survey [J]. IEEE Transactions on Industrial Informatics, 2011, 7(2): 212–223.

    Article  Google Scholar 

  10. UTKIN V I. Sliding modes in control and optimization [M]. Berlin, Heidelberg: Springer, 1992.

    Book  MATH  Google Scholar 

  11. VENKATARAMAN S T, GULATI S. Terminal sliding modes: A new approach to nonlinear control synthesis [C]//Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments. Pisa: IEEE, 1991: 443–448.

    Chapter  Google Scholar 

  12. YU S H, YU X H, MAN Z H. Robust global terminal sliding mode control of SISO nonlinear uncertain systems [C]//39th IEEE Conference on Decision and Control. Sydney: IEEE, 2000: 2198–2203.

    Google Scholar 

  13. MAN Z H, PAPLINSKI A P, WU H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators [J]. IEEE Transactions on Automatic Control, 1994, 39(12): 2464–2469.

    Article  MathSciNet  MATH  Google Scholar 

  14. TANG Y. Terminal sliding mode control for rigid robots [J]. Automatica, 1998, 34(1): 51–56.

    Article  MathSciNet  MATH  Google Scholar 

  15. YU X H, ZHIHONG M. Fast terminal sliding-mode control design for nonlinear dynamical systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 2002, 49(2): 261–264.

    Article  MathSciNet  MATH  Google Scholar 

  16. YU S H, YU X H, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode [J]. Automatica, 2005, 41(11): 1957–1964.

    Article  MathSciNet  MATH  Google Scholar 

  17. FENG Y, YU X H, HAN F L. On nonsingular terminal sliding-mode control of nonlinear systems [J]. Automatica, 2013, 49(6): 1715–1722.

    Article  MathSciNet  MATH  Google Scholar 

  18. FENG Y, YU X H, MAN Z H. Non-singular terminal sliding mode control of rigid manipulators [J]. Automatica, 2002, 38(12): 2159–2167.

    Article  MathSciNet  MATH  Google Scholar 

  19. LI S B, LI K Q, WANG J Q, et al. Nonsingular and fast terminal sliding mode control method [J]. Information and Control, 2009, 38(1): 1–8 (in Chinese).

    MathSciNet  Google Scholar 

  20. YANG L, YANG J Y. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems [J]. International Journal of Robust and Nonlinear Control, 2011, 21(16): 1865–1879.

    Article  MathSciNet  MATH  Google Scholar 

  21. MAN Z H, YU X H. Terminal sliding mode control of MIMO linear systems [J]. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 1997, 44(11): 1065–1070.

    Article  MathSciNet  Google Scholar 

  22. WANG L Y, CHAI T Y, ZHAI L F. Neural-network-based terminal sliding-mode control of robotic manipulators including actuator dynamics [J]. IEEE Transactions on Industrial Electronics, 2009, 56(9): 3296–3304.

    Article  Google Scholar 

  23. ZOU A M, KUMAR K D, HOU Z G, et al. Finite-time attitude tracking control for spacecraft using terminal sliding mode and Chebyshev neural network [J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2011, 41(4): 950–963.

    Article  Google Scholar 

  24. LU K F, XIA Y Q. Adaptive attitude tracking control for rigid spacecraft with finite-time convergence [J]. Automatica, 2013, 49(12): 3591–3599.

    Article  MathSciNet  MATH  Google Scholar 

  25. SHAO S K, ZONG Q, TIAN B L, et al. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement [J]. Journal of the Franklin Institute, 2017, 354(12): 4656–4674.

    Article  MathSciNet  MATH  Google Scholar 

  26. ZHANG Y, TANG S J, GUO J. Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase [J]. ISA Transactions, 2017, 71: 380–390.

    Article  Google Scholar 

  27. YI S C, ZHAI J Y. Adaptive second-order fast nonsingular terminal sliding mode control for robotic manipulators [J]. ISA Transactions, 2019, 90: 41–51.

    Article  Google Scholar 

  28. WANG Y Y, ZHU K W, YAN F, et al. Adaptive super-twisting nonsingular fast terminal sliding mode control for cable-driven manipulators using time-delay estimation [J]. Advances in Engineering Software, 2019, 128: 113–124.

    Article  Google Scholar 

  29. WANG Y Y, ZHU K W, CHEN B, et al. Model-free continuous nonsingular fast terminal sliding mode control for cable-driven manipulators [J]. ISA Transactions, 2020, 98: 483–495.

    Article  Google Scholar 

  30. FOSSEN T I. Handbook of marine craft hydrodynamics and motion control [M]. Hudson County: John Wiley & Sons, Ltd. 2011.

    Book  Google Scholar 

  31. POLYAKOV A. Nonlinear feedback design for fixed-time stabilization of linear control systems [J]. IEEE Transactions on Automatic Control, 2012, 57(8): 2106–2110.

    Article  MathSciNet  MATH  Google Scholar 

  32. ZHOU Z G, ZHOU D, SHI X N, et al. Prescribed performance fixed-time tracking control for a class of second-order nonlinear systems with disturbances and actuator saturation [J]. International Journal of Control, 2021, 94(1): 223–234.

    Article  MathSciNet  MATH  Google Scholar 

  33. XIA Y, XIE W, MA J C. Research on trajectory tracking control of manipulator based on modified terminal sliding mode with double power reaching law [J]. International Journal of Advanced Robotic Systems, 2019, 16(3): 172988141984789.

    Article  Google Scholar 

  34. ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence [J]. International Journal of Robust and Nonlinear Control, 2018, 28(8): 2996–3014.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengping Feng  (冯正平).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Feng, Z. Improved Nonsingular Fast Terminal Sliding Mode Control of Unmanned Underwater Hovering Vehicle. J. Shanghai Jiaotong Univ. (Sci.) 27, 393–401 (2022). https://doi.org/10.1007/s12204-022-2447-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2447-0

Key words

CLC number

Document code

Navigation