Skip to main content
Log in

Low Voltage Indium-Oxide-Zinc Thin Film Transistor Gated by KH550 Solid Electrolyte

基于KH550固态电解质的低压氧化铟锌薄膜晶体管

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

With the development of integrate circuit and artificial intelligence, many kinds of transistors have been invented. In recent years, wide attention has been paid to the oxide thin film transistors due to its ease preparation, low cost, and suitability for mass production. Traditionally used gate dielectric film (such as silicon dioxide film) in oxide thin film transistor owns low dielectric constant, which leads to weak capacitive coupling between the gate dielectric layer and the channel layer. As a result, high voltage (10 V or more) needs to be applied on the gate electrode in order to achieve the purpose of regulating the current of channel layer. Therefore, new oxide thin film needs to be developed. In this work, silane coupling agents (3-triethoxysilypropyla-mine) KH550 solid electrolyte film was obtained by spin coating-process. The KH550 solid electrolyte was used as gate dielectric layer to fabricate low-voltage indium zinc oxide thin film transistor. The surface topography and thickness of KH550 solid electrolyte film were characterized by atomic force microscope and field emission scanning electron microscope, respectively. The capacitance-frequency curve of the sample was measured by impedance analyzer (Soloartron 1260A), and the electrical characteristics of the sample were analyzed by a semiconductor parameter analyzer (Keithley 4200 SCS). A maximum specific capacitance of about 7.3 µF/cm2 is obtained at 1 Hz. The transistor shows a good stability of pulse operation and negative bias voltage, the operation voltage is only 2 V, the current on/off ratio is about 1.24 × 106, and the subthreshold swing is 169.2 mV/dec. The development of KH550 solid electrolyte gate dielectric provides a novel way for the research of oxide thin film transistor.

摘要

随着集成电路和人工智能的发展,发明了各种各样的晶体管。近年来,氧化薄膜晶体管因其易于制备、成本低、适合批量生产而受到广泛关注。氧化物薄膜晶体管中传统使用的栅介质膜(如二氧化硅膜)介电常数较低,导致栅介质层与沟道层之间的电容耦合较弱。为了达到调节沟道层电流的目的,需要在栅电极上施加高电压(10 V或更高),因此需要开发新型氧化物薄膜。采用旋涂法在氧化铟锡玻璃表面制备了硅烷偶联剂(γ-氨丙基三乙氧基硅烷)KH550固态电解质薄膜,以此为栅介质制备了氧化铟锌薄膜晶体管。利用原子力显微镜和扫描电子显微镜对KH550薄膜的表面形貌和厚度进行表征;使用阻抗分析仪测试了样品的电容-频率曲线;通过半导体参数仪分析了器件的电学特性。结果表明,频率为1 Hz时的单位面积电容达7.3 µF/cm2,晶体管的工作电压为2 V、开关比1.24×106、亚阈值摆幅169.2 mV/dec、场效应迁移率2.1 cm2/(V·s),其脉冲工作稳定性和负偏压稳定性良好。KH550固态栅介质的开发研究为氧化物薄膜晶体管栅介质的研究提供了一种新的方向和思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHOU B, SUN J, HAN X, et al. Low-voltage organic/inorganic hybrid transparent thin-film transistors gated by chitosan-based proton conductors [J]. IEEE Electron Device Letters, 2011, 32(11): 1549–1551.

    Article  Google Scholar 

  2. FORTUNATO E M C, BARQUINHA P M C, PIMENTEL A C M B G, et al. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature [J]. Applied Physics Letters, 2004, 85(13): 2541–2543.

    Article  Google Scholar 

  3. NOMURA K, OHTA H, TAKAGI A, et al. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors [J]. Nature, 2004, 432(7016): 488–492.

    Article  Google Scholar 

  4. FORTUNATO E, BARQUINHA P, MARTINS R. Oxide semiconductor thin-film transistors: A review of recent advances [J]. Advanced Materials, 2012, 24(22): 2945–2986.

    Article  Google Scholar 

  5. JIANG J, WAN Q, SUN J, et al. Ultralow-voltage transparent electric-double-layer thin-film transistors processed at room-temperature [J]. Applied Physics Letters, 2009, 95(15): 152114.

    Article  Google Scholar 

  6. NOMURA K, KAMIYA T, YANAGI H, et al. Sub-gap states in transparent amorphous oxide semiconductor, In-Ga-Zn-O, observed by bulk sensitive X-ray photoelectron spectroscopy [J]. Applied Physics Letters, 2008, 92(20): 202117.

    Article  Google Scholar 

  7. IWASAKI T, ITAGAKI N, DEN T, et al. Combinatorial approach to thin-film transistors using multi-component semiconductor channels: An application to amorphous oxide semiconductors in In-Ga-Zn-O system [J]. Applied Physics Letters, 2007, 90(24): 242114.

    Article  Google Scholar 

  8. JANG J, PARK J C, KONG D, et al. Endurance characteristics of amorphous-InGaZnO transparent flash memory with gold nanocrystal storage layer [J]. IEEE Transactions on Electron Devices, 2011, 58(11): 3940–3947.

    Article  Google Scholar 

  9. SURESH A, NOVAK S, WELLENIUS P, et al. Transparent indium gallium zinc oxide transistor based floating gate memory with platinum nanoparticles in the gate dielectric [J]. Applied Physics Letters, 2009, 94(12): 123501.

    Article  Google Scholar 

  10. CHEN W T, ZAN H W. High-performance light-erasable memory and real-time ultraviolet detector based on unannealed indium-gallium-zinc-oxide thin-film transistor [J]. IEEE Electron Device Letters, 2012, 33(1): 77–79.

    Article  Google Scholar 

  11. MYEONGHUN U, HAN Y J, SONG S H, et al. High performance p-type SnO thin-film transistor with SiOxgate insulator deposited by low-temperature PECVD method [J]. Journal of Semiconductor Technology and Science, 2014, 14(5): 666–672.

    Article  Google Scholar 

  12. LU A X, SUN J, JIANG J, et al. Low-voltage transparent electric-double-layer ZnO-based thin-film transistors for portable transparent electronics [J]. Applied Physics Letters, 2010, 96(4): 043114.

    Article  Google Scholar 

  13. YU S, GAO B, FANG Z, et al. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation [J]. Advanced Materials, 2013, 25(12): 1774–1779.

    Article  Google Scholar 

  14. ZHAO Y H, FENG G D, JIANG J. Poly(vinyl alcohol)-gated junctionless Al-Zn-O phototransistor for photonic and electric hybrid neuromorphic computation [J]. Solid-State Electronics, 2020, 165: 107767.

    Article  Google Scholar 

  15. ZHANG W, HU Y, CHANG T C, et al. An electronic synapse device based on solid electrolyte resistive random access memory [J]. IEEE Electron Device Letters, 2015, 36(8): 772–774.

    Article  Google Scholar 

  16. ZHAO Y H, LIU B, YANG J L, et al. Polymerdecorated 2D MoS2 synaptic transistors for biological bipolar metaplasticities emulation [J]. Chinese Physics Letters, 2020, 37(8): 088501.

    Article  Google Scholar 

  17. OK J G, KWAK M K, HUARD C M, et al. Photoroll lithography (PRL) for continuous and scalable patterning with application in flexible electronics [J]. Advanced Materials, 2013, 25(45): 6554–6561.

    Article  Google Scholar 

  18. HERLOGSSON L, CRISPIN X, ROBINSON N, et al. Low-voltage polymer field-effect transistors gated via a proton conductor [J]. Advanced Materials, 2007, 19(1): 97–101.

    Article  Google Scholar 

  19. YUAN H, SHIMOTANI H, TSUKAZAKI A, et al. High-density carrier accumulation in ZnO field-effect transistors gated by electric double layers of ionic liquids [J]. Advanced Functional Materials, 2009, 19(7): 1046–1053.

    Article  Google Scholar 

  20. GUO L, WEN J, CHENG G, et al. Dual in-plane-gate coupled IZO thin film transistor based on capacitive coupling effect in KH550-GO solid electrolyte [J]. Acta Physica Sinica, 2016, 65(17): 178501 (in Chinese).

    Article  Google Scholar 

  21. FENG G D, JIANG J, ZHAO Y H, et al. A sub-10 nm vertical organic/inorganic hybrid transistor for pain-perceptual and sensitization-regulated nociceptor emulation [J]. Advanced Materials, 2020, 32(6): 1906171.

    Article  Google Scholar 

  22. PAL B N, DHAR B M, SEE K C, et al. Solution-deposited sodium beta-alumina gate dielectrics for low-voltage and transparent field-effect transistors [J]. Nature Materials, 2009, 8(11): 898–903.

    Article  Google Scholar 

  23. LIU Y H, ZHU L Q, SHI Y, et al. Proton conducting sodium alginate electrolyte laterally coupled low-voltage oxide-based transistors [J]. Applied Physics Letters, 2014, 104(13): 133504.

    Article  Google Scholar 

  24. FU W H, LI J, JIANG D L, et al. Proton conducting C3N4/Chitosan composite electrolytes based In-ZnO thin film transistor for artificial synapse [J]. Organic Electronics, 2020, 85: 105870.

    Article  Google Scholar 

  25. MIN S Y, CHO W J. CMOS-compatible synaptic transistor gated by chitosan electrolyte-Ta2 O5 hybrid electric double layer [J]. Scientific Reports, 2020, 10: 15561.

    Article  Google Scholar 

  26. LU P P, SHANG D S, YANG C S, et al. An organic synaptic transistor with nafion electrolyte [J]. Journal of Physics D: Applied Physics, 2020, 53(48): 485102.

    Article  Google Scholar 

  27. LONG T Y, ZHU L Q, REN Z Y, et al. Global modulatory heterosynaptic mechanisms in bio-polymer electrolyte gated oxide neuron transistors [J]. Journal of Physics D: Applied Physics, 2020, 53(43): 435105.

    Article  Google Scholar 

  28. SAID E, CRISPIN X, HERLOGSSON L, et al. Polymer field-effect transistor gated via a poly(styrenesulfonic acid) thin film [J]. Applied Physics Letters, 2006, 89(14): 143507.

    Article  Google Scholar 

  29. GUO L Q, HUANG Y, SHI Y, et al. Indium-zinc-oxide electric-double-layer thin-film transistors gated by silane coupling agents 3-triethoxysilylpropylamine-graphene oxide solid electrolyte [J]. Journal of Physics D: Applied Physics, 2015, 48(28): 285103.

    Article  Google Scholar 

  30. WEE G, LARSSON O, SRINIVASAN M, et al. Effect of the ionic conductivity on the performance of polyelectrolyte-based supercapacitors [J]. Advanced Functional Materials, 2010, 20(24): 4344–4350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqiang Guo  (郭立强).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Q., Guo, L., Wang, W. et al. Low Voltage Indium-Oxide-Zinc Thin Film Transistor Gated by KH550 Solid Electrolyte. J. Shanghai Jiaotong Univ. (Sci.) 28, 186–191 (2023). https://doi.org/10.1007/s12204-022-2421-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-022-2421-x

Key words

CLC number

Document code

关键词

Navigation