Skip to main content
Log in

Efficient Online Vehicle Tracking for Real—Virtual Mapping Systems

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Multi-object tracking is a vital problem as many applications require better tracking approaches. Although learning-based detectors are becoming extremely powerful, there are few tracking methods designed to work with them in real time. We explored an efficient flexible online vehicle tracking-by-detection framework suitable for real-virtual mapping systems, which combines a non-recursive temporal window search with delayed output and produces stable trajectories despite noisy detection responses. Its computation speed meets the real-time requirements, whereas its performance is comparable with that of state-of-the-art online trackers on the DETRAC dataset. The trajectories from our approach also contain the target class and color information important for virtual vehicle motion reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A, B :

Bounding boxes

c :

Center point of bounding box

d A∪B :

Diagonal length of the minimum rectangle area containing A and B

p, ṗ :

Image-space position and velocity vectors

P, V :

World-space position and velocity vectors

s :

Score of confidence

t :

Time, frame

w :

Weight

x :

Feature vector

α, β :

Low and high thresholds

ε :

Small quantity

Σ :

Covariance matrix

σ 2 :

Variance

References

  1. BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking [C]//2016 IEEE International Conference on Image Processing (ICIP). Phoenix, AZ: IEEE, 2016: 3464–3468.

    Google Scholar 

  2. HUANG C, WU B, NEVATIA R. Robust object tracking by hierarchical association of detection responses [C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2008: 788–801.

    Google Scholar 

  3. BREITENSTEIN M D, REICHLIN F, LEIBE B, et al. Robust tracking-by-detection using a detector confidence particle filter [C]//2009 IEEE 12th International Conference on Computer Vision. Kyoto: IEEE, 2009: 1515–1522.

    Google Scholar 

  4. ANDRIYENKO A, SCHINDLER K. Globally optimal multi-target tracking on a hexagonal lattice [C]//European Conference on Computer Vision. Berlin, Heidelberg: Springer, 2010: 466–479.

    Google Scholar 

  5. BERCLAZ J, FLEURET F, TURETKEN E, et al. Multiple object tracking using K-shortest paths optimization [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1806–1819.

    Article  Google Scholar 

  6. PIRSIAVASH H, RAMANAN D, FOWLKES C C. Globally-optimal greedy algorithms for tracking a variable number of objects [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO: IEEE, 2011: 1201–1208.

    Google Scholar 

  7. ANDRIYENKO A, SCHINDLER K. Multi-target tracking by continuous energy minimization [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO: IEEE, 2011: 1265–1272.

    Google Scholar 

  8. MILAN A, ROTH S, SCHINDLER K. Continuous energy minimization for multitarget tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1): 58–72.

    Article  Google Scholar 

  9. LEE B, ERDENEE E, JIN S, et al. Multi-class multi-object tracking using changing point detection [C]//European Conference on Computer Vision. Cham: Springer, 2016: 68–83.

    Google Scholar 

  10. BENFOLD B, REID I. Stable multi-target tracking in real-time surveillance video [C]//2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Colorado Springs, CO: IEEE, 2011: 3457–3464.

    Google Scholar 

  11. BREITENSTEIN M D, REICHLIN F, LEIBE B, et al. Online multiperson tracking-by-detection from a single, uncalibrated camera [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(9): 1820–1833.

    Article  Google Scholar 

  12. BAE S H, YOON K J. Robust online multi-object tracking based on tracklet confidence and online discriminative appearance learning [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Columbus, OH: IEEE, 2014: 1218–1225.

    Google Scholar 

  13. XIANG Y, ALAHI A, SAVARESE S. Learning to track: Online multi-object tracking by decision making [C]//2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015: 4705–4713.

    Google Scholar 

  14. MILAN A, REZATOFIGHI S H, DICK A, et al. Online multi-target tracking using recurrent neural networks [C]//Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17). San Francisco California: AAAI, 2017: 4225–4232.

    Google Scholar 

  15. BOCHINSKI E, EISELEIN V, SIKORA T. High-speed tracking-by-detection without using image information [C]//2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Lecce: IEEE, 2017: 1–6.

    Google Scholar 

  16. BOCHINSKI E, SENST T, SIKORA T. Extending IOU based multi-object tracking by visual information [C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Auckland: IEEE, 2018: 1–6.

    Google Scholar 

  17. WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric [C]//2017 IEEE International Conference on Image Processing (ICIP). Beijing: IEEE, 2017: 3645–3649.

    Google Scholar 

  18. WEN L Y, DU D W, CAI Z W, et al. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking [J]. Computer Vision and Image Understanding, 2020, 193: 102907.

    Article  Google Scholar 

  19. LYU S W, CHANG M C, DU D W, et al. UADETRAC 2018: Report of AVSS2018 & IWT4S challenge on advanced traffic monitoring [C]//2018 15th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Auckland: IEEE, 2018: 1–6.

    Google Scholar 

  20. NAPHADE M, ANASTASIU D C, SHARMA A, et al. The NVIDIA AI City challenge [C]//2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation. San Francisco, CA: IEEE, 2017: 1–6.

    Google Scholar 

  21. NAPHADE M, CHANG M C, SHARMA A, et al. The 2018 NVIDIA AI City challenge [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT: IEEE, 2018: 53–537.

    Google Scholar 

  22. NAPHADE M, WANG S, ANASTASIU D C, et al. The 4th AI City challenge [C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Seattle, WA: IEEE, 2020: 2665–2674.

    Google Scholar 

  23. REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV: IEEE, 2016: 779–788.

    Google Scholar 

  24. REDMON J, FARHADI A. YOLOv3: An incremental improvement [EB/OL]. [2021-02-08]. https://arxiv.org/pdf/1804.02767.pdf.

  25. LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot MultiBox detector [M]//Computer vision-ECCV 2016. Cham: Springer International Publishing, 2016: 21–37.

    Google Scholar 

  26. OH S, RUSSELL S, SASTRY S. Markov chain Monte Carlo data association for general multiple-target tracking problems [C]//2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601). Nassau: IEEE, 2004}: 735–

    Google Scholar 

  27. SOCHOR J, ŠPAŇHEL J, JURÁNEK R, et al. Graph@FIT submission to the NVIDIA AI City challenge 2018 [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT: IEEE, 2018: 77–777.

    Google Scholar 

  28. DUBSKÁ M, HEROUT A, JURÁNEK R, et al. Fully automatic roadside camera calibration for traffic surveillance [J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(3): 1162–1171.

    Article  Google Scholar 

  29. DUBSKÁ M, HEROUT A, SOCHOR J. Automatic camera calibration for traffic understanding [EB/OL]. [2021-02-08]. https://doi.org/10.5244/C.28.42.

  30. TANG Z, WANG G A, XIAO H, et al. Single-camera and inter-camera vehicle tracking and 3D speed estimation based on fusion of visual and semantic features [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT: IEEE, 2018: 108–1087.

    Google Scholar 

  31. HUA S, KAPOOR M, ANASTASIU D C. Vehicle tracking and speed estimation from traffic videos [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Salt Lake City, UT: IEEE, 2018: 153–1537.

    Google Scholar 

  32. ZHENG Z H, WANG P, LIU W, et al. Distance-IoU loss: Faster and better learning for bounding box regression [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7): 12993–13000.

    Article  Google Scholar 

  33. BERNARDIN K, STIEFELHAGEN R. Evaluating multiple object tracking performance: The CLEAR MOT metrics [J]. EURASIP Journal on Image and Video Processing, 2008, 2008: 1–10.

    Article  Google Scholar 

  34. WANG L, LU Y, WANG H, et al. Evolving boxes for fast vehicle detection [C]//2017 IEEE International Conference on Multimedia and Expo (ICME). Hong Kong: IEEE, 2017: 1135–1140.

    Google Scholar 

  35. HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN [C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice: IEEE, 2017: 2980–2988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiacheng Chen  (陈佳诚).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Li, L. & Yang, X. Efficient Online Vehicle Tracking for Real—Virtual Mapping Systems. J. Shanghai Jiaotong Univ. (Sci.) 26, 598–606 (2021). https://doi.org/10.1007/s12204-021-2349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2349-6

Key words

CLC number

Document code

Navigation