Skip to main content
Log in

Calculation of Electrostatic/Magnetic Adhesion Force Between Adjacent Objects Considering Thin Gap Effect

考虑气隙效应的相邻物体间的静电/磁吸附力计算

  • Original Paper
  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This paper presents a new approach to evaluating the electrostatic/magnetic adhesion force between two adjacent objects separated by a thin gap. In this approach, instead of generating mesh for the gap, a contact boundary is introduced in the finite element modeling to obtain a reasonable field distribution; then the field in the gap is approximated based on the continuity condition at their interface, so that the adhesion force can be properly calculated. Moreover, a simple equivalent circuit model is introduced to explain how the thin gap influences the adhesion force significantly. Numerical experiments are given to demonstrate the validity of the proposed method and the significance of the thin gap.

摘要

本文提出了一种新的方法计算由薄间隙分隔的两个相邻物体之间的静电/磁吸附力。在该方法中,无需为间隙生成网格,通过在有限元模型中引入接触边界,获得合理的场分布;然后根据界面处的连续性条件来预测间隙中的场,从而合理地计算出吸附力。此外,本文引入了一个简单的等效电路模型来解释薄间隙如何显著影响吸附力。数值实验验证了所提方法的有效性以及薄间隙的重要性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASANO K, HATAKEYAMA F, YATSUZUKA K. Fundamental study of an electrostatic chuck for silicon wafer handling [J]. IEEE Transactions on Industry Applications, 2002, 38(3): 840–845.

    Article  Google Scholar 

  2. YATSUZUKA K, HATAKEYAMA F, ASANO K, et al. Fundamental characteristics of electrostatic wafer chuck with insulating sealant [J]. IEEE Transactions on Industry Applications, 2000, 36(2): 510–516.

    Article  Google Scholar 

  3. TAGHIZADEH M, GHAFFARI A, NAJAFI F. Modeling and identification of a solenoid valve for PWM control applications [J]. Comptes Rendus Mécanique, 2009, 337(3): 131–140.

    Article  Google Scholar 

  4. MEUNIER G. The finite element method for electromagnetic modeling [M]. London: ISTE, 2008.

    Book  MATH  Google Scholar 

  5. PRAHLAD H, PELRINE R, STANFORD S, et al. Electroadhesive robots — wall climbing robots enabled by a novel, robust, and electrically controllable adhesion technology [C]//IEEE International Conference on Robotics and Automation. Pasadena: IEEE, 2008: 3028–3033.

    Google Scholar 

  6. BERENGUERES J, TADAKUMA K, KAMOI T, et al. Compliant distributed magnetic adhesion device for wall climbing [C]//IEEE International Conference on Robotics and Automation. Roma: IEEE, 2007: 1256–1261.

    Google Scholar 

  7. MAO J, QIN L, ZHANG W. Modeling and simulation of electrostatic adhesion force in concentric-ring electrode structures of multilayer dielectrics [J]. The Journal of Adhesion, 2016, 92(4): 319–340.

    Article  Google Scholar 

  8. CHEN R, HUANG Y, TANG Q, et al. Modelling and analysis of the electrostatic adhesion performance considering a rotary disturbance between the electrode panel and the attachment substrate [J]. Journal of Adhesion Science and Technology, 2016, 30(21): 2301–2315.

    Article  Google Scholar 

  9. CHEN R, HUANG Y, TANG Q. An analytical model for electrostatic adhesive dynamics on dielectric substrates [J]. Journal of Adhesion Science and Technology, 2017, 31(11): 1229–1250.

    Article  Google Scholar 

  10. LHERNOULD M S, DELCHAMBRE A, RÉGNIER S, et al. Electrostatic forces in micromanipulations: Review of analytical models and simulations including roughness [J]. Applied Surface Science, 2007, 253(14): 6203–6210.

    Article  Google Scholar 

  11. LHERNOULD M S, BERKE P, MASSART T J, et al. Variation of the electrostatic adhesion force on a rough surface due to the deformation of roughness asperities during micromanipulation of a spherical rigid body [J]. Journal of Adhesion Science and Technology, 2009, 23(9): 1303–1325.

    Article  Google Scholar 

  12. REN Z, CENDES Z. Shell elements for the computation of magnetic forces [J]. IEEE Transactions on Magnetics, 2001, 37(5): 3171–3174.

    Article  Google Scholar 

  13. FU W N, ZHOU P, LIN D, et al. Magnetic force computation in permanent magnets using a local energy coordinate derivative method [J]. IEEE Transactions on Magnetics, 2004, 40(2): 683–686.

    Article  Google Scholar 

  14. FU W N, HO S L, CHEN N N. Application of shell element method to 3-D finite-element computation of the force on one body in contact with others [J]. IEEE Transactions on Magnetics, 2010, 46(11): 3893–3898.

    Article  Google Scholar 

  15. CHOI H S, PARK I H, LEE S H. Concept of virtual air gap and its applications for force calculation [J]. IEEE Transactions on Magnetics, 2006, 42(4): 663–666.

    Article  Google Scholar 

  16. SEO J H, CHOI H S. Computation of magnetic contact forces [J]. IEEE Transactions on Magnetics, 2014, 50(2): 525–528.

    Article  Google Scholar 

  17. CHOI H S, LEE S H, KIM Y S, et al. Implementation of virtual work principle in virtual air gap [J]. IEEE Transactions on Magnetics, 2008, 44(6): 1286–1289.

    Article  Google Scholar 

  18. YOO J, CHOI J S, HONG S J, et al. Finite element analysis of the attractive force on a Coulomb type electrostatic chuck [C]//2007 International Conference on Electrical Machines and Systems (ICEMS). Seoul: IEEE, 2007: 1371–1375.

    Google Scholar 

  19. ZHU Y Y, CESCOTTO S. Transient thermal and ther-momechanical analysis by mixed FEM [J]. Computers & Structures, 1994, 53(2): 275–304.

    Article  MATH  Google Scholar 

  20. DRIESEN J, BELMANS R J M, HAMEYER K. Finite-element modeling of thermal contact resistances and insulation layers in electrical machines [J]. IEEE Transactions on Industry Applications, 2001, 37(1): 15–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenqun Guan  (关振群).

Additional information

Foundation item

the National Natural Science Foundation of China (No. 11272074), and the National Science and Technology Major Project (No. 2011ZX02403-00)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Li, Z., Zhang, L. et al. Calculation of Electrostatic/Magnetic Adhesion Force Between Adjacent Objects Considering Thin Gap Effect. J. Shanghai Jiaotong Univ. (Sci.) 28, 213–219 (2023). https://doi.org/10.1007/s12204-021-2317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2317-1

Key words

CLC number

Document code

关键词

Navigation