Skip to main content
Log in

Effects of Elastic Joints on Performances of a Close-Chained Rod Rolling Robot

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

In rolling experiments, the performances of spider-like robot are limited greatly by its motors’ driving ability; meanwhile, the ground reaction forces are so great that they damaged the rods. In this paper, we solve above problems both mechanically and by control. Firstly, we design the parameters of the central pattern generator (CPG) network based on the kinematics of the robot to enable a smooth rolling trajectory. And we also analyze the kinematic rolling and dynamic rolling briefly. Secondly, we add torsion springs to the passive joints of the spider-like robot aiming to make use of its energy storage capacity to compensate the insufficient torque. The simulation results show that the optimized CPG control parameters can reduce the fluctuation of the mass center and the ground reaction forces. The torsion spring can reduce the peak torque requirements of the actuated joints by 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LOW K H, HU T J, MOHAMMED S, et al. Perspectives on biologically inspired hybrid and multi-modal locomotion [J]. Bioinspiration & Biomimetics, 2015, 10(2): 020301.

    Article  Google Scholar 

  2. KING R S. BiLBIQ: A biologically inspired robot with walking and rolling locomotion [M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.

    Book  Google Scholar 

  3. SASTRA J, CHITTA S, YIM M. Dynamic rolling for a modular loop robot [J]. The International Journal of Robotics Research, 2009, 28(6): 758–773.

    Article  Google Scholar 

  4. CHOWDHURY A R, SOH G S, FOONG S H, et al. Experiments in robust path following control of a rolling and spinning robot on outdoor surfaces [J]. Robotics and Autonomous Systems, 2018, 106: 140–151.

    Article  Google Scholar 

  5. MASUDA Y, ISHIKAWA M. Development of a deformation-driven rolling robot with a soft outer shell [C]//2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM). Munich: IEEE, 2017: 1651–1656.

    Chapter  Google Scholar 

  6. PARK S, PARK E, YIM M, et al. Optimization-based nonimpact rolling locomotion of a variable geometry truss [J]. IEEE Robotics and Automation Letters, 2019, 4(2): 747–752.

    Article  Google Scholar 

  7. WANG X L, JIN H Z, ZHU Y H, et al. Serpenoid polygonal rolling for chain-type modular robots: A study of modeling, pattern switching and application [J]. Robotics and Computer-Integrated Manufacturing, 2016, 39: 56–67.

    Article  Google Scholar 

  8. WANG Y J, WU C L, YU L Q, et al. Trajectory planning of a rolling robot of closed five-bow-shaped-bar linkage [J]. Robotics and Computer-Integrated Manufacturing, 2018, 53: 81–92.

    Article  Google Scholar 

  9. WANG Y J, WU C L, YU L Q, et al. Dynamics of a rolling robot of closed five-arc-shaped-bar linkage [J]. Mechanism and Machine Theory, 2018, 121: 75–91.

    Article  Google Scholar 

  10. TIAN Y B, YAO Y A, DING W, et al. Design and locomotion analysis of a novel deformable mobile robot with worm-like, self-crossing and rolling motion [J]. Robotica, 2016, 34(9): 1961–1978.

    Article  Google Scholar 

  11. TIAN Y B, ZHANG D, YAO Y A, et al. A reconfigurable multi-mode mobile parallel robot [J]. Mechanism and Machine Theory, 2017, 111: 39–65.

    Article  Google Scholar 

  12. WEI X Z, TIAN Y B, WEN S S. Design and locomotion analysis of a novel modular rolling robot [J]. Mechanism and Machine Theory, 2019, 133: 23–43.

    Article  Google Scholar 

  13. YIM M, ROUFAS K, DUFF D, et al. Modular reconfigurable robots in space applications [J]. Autonomous Robots, 2003, 14(2/3): 225–237.

    Article  Google Scholar 

  14. CURTIS S, BRANDT M, BOWERS G, et al. Tetrahedral robotics for space exploration [C]//2007 IEEE Aerospace Conference. Big Sky: IEEE, 2007: 1–9.

    Google Scholar 

  15. GOULDING M. Circuits controlling vertebrate locomotion: Moving in a new direction [J]. Nature Reviews Neuroscience, 2009, 10(7): 507–518.

    Article  MathSciNet  Google Scholar 

  16. GOSWAMI A, VADAKKEPAT P. Humanoid robotics: A reference [M]. Dordrecht: Springer, 2019: 1099–1134.

    Book  Google Scholar 

  17. VAN DER NOOT N, IJSPEERT A J, RONSSE R. Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker [J]. The International Journal of Robotics Research, 2018, 37(1): 168–196.

    Article  Google Scholar 

  18. YU J Z, CHEN S F, WU Z X, et al. Energy analysis of a CPG-controlled miniature robotic fish [J]. Journal of Bionic Engineering, 2018, 15(2): 260–269.

    Article  Google Scholar 

  19. SPRÖWITZ A, TULEU A, VESPIGNANI M, et al. Towards dynamic trot gait locomotion: Design, control, and experiments with Cheetah-cub, a compliant quadruped robot [J]. The International Journal of Robotics Research, 2013, 32(8): 932–950.

    Article  Google Scholar 

  20. COLASANTO L, VAN DER NOOT N, IJSPEERT A J. Bio-inspired walking for humanoid robots using feet with human-like compliance and neuromuscular control [C]//2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul: IEEE, 2015: 26–32.

    Chapter  Google Scholar 

  21. HUTTER M, GEHRING C, BLOESCH M, et al. Starleth: a compliant quadrupedal robot for fast, efficient, and versatile locomotion [M]//Adaptive mobile robotics. Singapore: World Scientific, 2012: 483–490.

    Chapter  Google Scholar 

  22. HUTTER M, GEHRING C, LAUBER A, et al. ANY-mal — toward legged robots for harsh environments [J]. Advanced Robotics, 2017, 31(17): 918–931.

    Article  Google Scholar 

  23. KAKOGAWA A, JEON S, MA S G. Stiffness design of a resonance-based planar snake robot with parallel elastic actuators [J]. IEEE Robotics and Automation Letters, 2018, 3(2): 1284–1291.

    Article  Google Scholar 

  24. IRMSCHER C, WOSCHKE E, MAY E, et al. Design, optimisation and testing of a compact, inexpensive elastic element for series elastic actuators [J]. Medical Engineering & Physics, 2018, 52: 84–89.

    Article  Google Scholar 

  25. DOS SANTOS W M, CAURIN G A P, SIQUEIRA A A G. Design and control of an active knee orthosis driven by a rotary Series Elastic Actuator [J]. Control Engineering Practice, 2017, 58: 307–318.

    Article  Google Scholar 

  26. TSAGARAKIS N G, MORFEY S, MEDRANO CERDA G, et al. COMpliant huMANoid COMAN: Optimal joint stiffness tuning for modal frequency control [C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany: IEEE, 2013: 673–678.

    Chapter  Google Scholar 

  27. SHI R D, ZHANG X L, YAO Y A. A CPG-based control method for the multi-mode locomotion of a desert spider robot [J]. Robot, 2018, 40(2): 146–157 (in Chinese).

    Google Scholar 

  28. IJSPEERT A J. Central pattern generators for locomotion control in animals and robots: A review [J]. Neural Networks, 2008, 21(4): 642–653.

    Article  Google Scholar 

  29. MORO F L, SPRÖWITZ A, TULEU A, et al. Horselike walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot [J]. Biological Cybernetics, 2013, 107(3): 309–320.

    Article  MathSciNet  Google Scholar 

  30. ZHONG G L, CHEN L, JIAO Z D, et al. Locomotion control and gait planning of a novel hexapod robot using biomimetic neurons [J]. IEEE Transactions on Control Systems Technology, 2018, 26(2): 624–636.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Zhang  (张秀丽).

Additional information

Foundation item: the Fundamental Research Funds for the Central Universities of China (No. M15JB00250)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Zhang, X., Huang, S. et al. Effects of Elastic Joints on Performances of a Close-Chained Rod Rolling Robot. J. Shanghai Jiaotong Univ. (Sci.) 27, 621–630 (2022). https://doi.org/10.1007/s12204-021-2289-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-021-2289-1

Key words

CLC number

Document code

Navigation