Skip to main content

Velocity-Varying Target Tracking of Mobile Sensor Network Based on Flocking Control

Abstract

Existing coupled distributed estimation and motion control strategies of mobile sensor networks present limitations in velocity-varying target tracking. Therefore, a velocity-varying target tracking algorithm based on flocking control is proposed herein. The Kalman-consensus filter is utilized to estimate the position, velocity and acceleration of a target. The flocking control algorithm with a velocity-varying virtual leader enables the position of the center of the mobile sensor network to converge to that of the target. By applying an effective cascading Lyapunov method, stability analysis is performed. Simulation results are provided to validate the feasibility of the proposed algorithm.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    RAWAT P, SINGH K D, CHAOUCHI H, et al. Wireless sensor networks: A survey on recent developments and potential synergies [J]. The Journal of Supercomputing, 2014, 68(1): 1–48.

    Article  Google Scholar 

  2. [2]

    ZHANG Y, LU R Y, CAI Y Z. Missile-target situation assessment model based on reinforcement learning [J]. Journal of Shanghai Jiao Tong University (Science), 2020, 25(5): 561–568.

    Article  Google Scholar 

  3. [3]

    HALL D L, LLINAS J. An introduction to multisensor data fusion [J]. Proceedings of the IEEE, 1997, 85(1): 6–23.

    Article  Google Scholar 

  4. [4]

    SPANOS D P, OLFATI-SABER R, MURRAY R M. Dynamic consensus on mobile networks [C]// IFAC World Congress. Prague: IFAC, 2005: 1–6.

    Google Scholar 

  5. [5]

    OLFATI-SABER R. Distributed Kalman filtering for sensor networks [C]// 2007 46th IEEE Conference on Decision and Control. New Orleans, LA: IEEE, 2007: 5492–5498.

    Chapter  Google Scholar 

  6. [6]

    WANG L, ZHANG G Z, ZHU H Y, et al. Adaptive consensus fusion estimation for mobile sensor networks [J]. Journal of Shanghai Jiao Tong University, 2011, 45(3): 383–387 (in Chinese).

    Google Scholar 

  7. [7]

    ZHANG Y, TIAN Y P. A fully distributed weight design approach to consensus Kalman filtering for sensor networks [J]. Automatica, 2019, 104: 34–40.

    MathSciNet  Article  Google Scholar 

  8. [8]

    LIU Q Y, WANG Z D, HE X, et al. On Kalman-consensus filtering with random link failures over sensor networks [J]. IEEE Transactions on Automatic Control, 2018, 63(8): 2701–2708.

    MathSciNet  Article  Google Scholar 

  9. [9]

    OLFATI-SABER R, JALALKAMALI P. Coupled distributed estimation and control for mobile sensor networks [J]. IEEE Transactions on Automatic Control, 2012, 57(10): 2609–2614.

    MathSciNet  Article  Google Scholar 

  10. [10]

    LOU K, CUI B T, LI W. Target tracking algorithm of mobile sensor networks based on flocking control [J]. Control and Decision, 2013, 28(11): 1637–1642 (in Chinese).

    Google Scholar 

  11. [11]

    SU H S, CHEN X, CHEN M Z Q, et al. Distributed estimation and control for mobile sensor networks with coupling delays [J]. ISA Transactions, 2016, 64: 141–150.

    Article  Google Scholar 

  12. [12]

    JENABZADEH A, SAFARINEJADIAN B. Distributed tracking control problem of Lipschitz multiagent systems with external disturbances and input delay [J]. Systems Science & Control Engineering, 2018, 6(1): 268–278.

    Article  Google Scholar 

  13. [13]

    LUO X Y, LI X L, LI S B, et al. Flocking for multiagent systems with optimally rigid topology based on information weighted Kalman consensus filter [J]. International Journal of Control, Automation and Systems, 2017, 15(1): 138–148.

    Article  Google Scholar 

  14. [14]

    SU H S, WANG X F, LIN Z L. Flocking of multiagents with a virtual leader [J]. IEEE Transactions on Automatic Control, 2009, 54(2): 293–307.

    MathSciNet  Article  Google Scholar 

  15. [15]

    YU W W, CHEN G R, CAO M. Distributed leader-follower flocking control for multi-agent dynamical systems with time-varying velocities [J]. Systems & Control Letters, 2010, 59(9): 543–552.

    MathSciNet  Article  Google Scholar 

  16. [16]

    ZHAO X W, GUAN Z H, LI J, et al. Flocking of multi-agent nonholonomic systems with unknown leader dynamics and relative measurements [J]. International Journal of Robust and Nonlinear Control, 2017, 27(17): 3685–3702.

    MathSciNet  MATH  Google Scholar 

  17. [17]

    GAO J Y, XU X, DING N, et al. Flocking motion of multi-agent system by dynamic pinning control [J]. IET Control Theory & Applications, 2017, 11(5): 714–722.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yunze Cai.

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61627810), the Joint Fund of Advanced Aerospace Manufacturing Technology Research (No. 2017-JCJQ-ZQ-031), and the National Science and Technology Major Program of China (No. 2018YFB1305003)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Dong, X., Yao, L. et al. Velocity-Varying Target Tracking of Mobile Sensor Network Based on Flocking Control. J. Shanghai Jiaotong Univ. (Sci.) 26, 446–453 (2021). https://doi.org/10.1007/s12204-021-2283-7

Download citation

Key words

  • mobile sensor network
  • velocity-varying target tracking
  • flocking control
  • Kalman-consensus filtering

CLC number

  • TP 273

Document code

  • A