Skip to main content
Log in

Poisson Image Restoration via Transformed Network

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

There is a Poisson inverse problem in biomedical imaging, fluorescence microscopy and so on. Since the observed measurements are damaged by a linear operator and further destroyed by Poisson noise, recovering the approximate original image is difficult. Motivated by the decouple scheme and the variance-stabilizing transformation (VST) strategy, we propose a method of transformed convolutional neural network (CNN) to restore the observed image. In the network, the Conv-layers play the role of a linear inverse filter and the distribution transformation simultaneously. Furthermore, there is no batch normalization (BN) layer in the residual block of the network, which is devoted to tackling with the non-Gaussian recovery procedure. The proposed method is compared with state-of-the-art Poisson deblurring algorithms, and the experimental results show the effectiveness of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BARRETT H H. Objective assessment of image quality: Effects of quantum noise and object variability [J]. Journal of the Optical Society of America A, 1990, 7(7): 1266–1278.

    Article  Google Scholar 

  2. DABOV K, FOI A, KATKOVNIK V, et al. Image restoration by sparse 3D transform-domain collaborative filtering [J]. Proceedings of SPIE, 2008, 6812: 681207.

    Article  Google Scholar 

  3. XUE F, LUISIER F, BLU T. Multi-wiener SURE-LET deconvolution [J]. IEEE Transactions on Image Processing, 2013, 22(5): 1954–1968.

    Article  MathSciNet  Google Scholar 

  4. FIGUEIREDO M A T, BIOUCAS-DIAS J M. Restoration of Poissonian images using alternating direction optimization [J]. IEEE transactions on Image Processing, 2010, 19(12): 3133–3145.

    Article  MathSciNet  Google Scholar 

  5. LEFKIMMIATIS S, UNSER M. Poisson image reconstruction with Hessian Schatten-norm regularization [J]. IEEE Transactions on Image Processing, 2013, 22(11): 4314–4327.

    Article  MathSciNet  Google Scholar 

  6. SARDER P, NEHORAI A. Deconvolution methods for 3-D fluorescence microscopy images [J]. IEEE Signal Processing Magazine, 2006, 23(3): 32–45.

    Article  Google Scholar 

  7. BERTERO M, BOCCACCI P, DESIDERÈ G, et al. Image deblurring with Poisson data: From cells to galaxies [J]. Inverse Problems, 2009, 25(12): 123006.

    Article  MathSciNet  Google Scholar 

  8. DEY N, BLANC-FERAUD L, ZIMMER C, et al. Richardson-Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution [J]. Microscopy Research and Technique, 2006, 69(4): 260–266.

    Article  Google Scholar 

  9. HARMANY Z T, MARCIA R F, WILLETT R M. This is SPIRAL-TAP: Sparse Poisson intensity reconstruction algorithms-theory and practice [J]. IEEE Transactions on Image Processing, 2011, 21(3): 1084–1096.

    Article  MathSciNet  Google Scholar 

  10. BENFENATI A, RUGGIERO V. Inexact Bregman iteration with an application to Poisson data reconstruction [J]. Inverse Problems, 2013, 29(6): 065016.

    Article  MathSciNet  Google Scholar 

  11. STARCK J L, MURTAGH F. Image restoration with noise suppression using the wavelet transform [J]. Astronomy and Astrophysics, 1994, 288: 342–348.

    Google Scholar 

  12. ANTONIADIS A, BIGOT J. Poisson inverse problems [J]. The Annals of Statistics, 2006, 34(5): 2132–2158.

    Article  MathSciNet  Google Scholar 

  13. CARLAVAN M, BLANC-FERAUD L. Sparse Poisson noisy image deblurring [J]. IEEE Transactions on Image Processing, 2011, 21(4): 1834–1846.

    Article  MathSciNet  Google Scholar 

  14. SETZER S, STEIDL G, TEUBER T. Deblurring Poissonian images by split Bregman techniques [J]. Journal of Visual Communication and Image Representation, 2010, 21(3): 193–199.

    Article  Google Scholar 

  15. PUSTELNIK N, CHAUX C, PESQUET J C. Parallel proximal algorithm for image restoration using hybrid regularization — Extended version [J]. IEEE Transactions on Image Processing, 2011, 20(9): 2450–2462.

    Article  MathSciNet  Google Scholar 

  16. CHEN D Q. Regularized generalized inverse accelerating linearized alternating minimization algorithm for frame-based Poissonian image deblurring [J]. SIAM Journal on Imaging Sciences, 2014, 7: 716–739.

    Article  MathSciNet  Google Scholar 

  17. MA L Y, MOISAN L, YU J, et al. A dictionary learning approach for Poisson image deblurring [J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1277–1289.

    Article  Google Scholar 

  18. DUPÉ F X, FADILI M J, STARCK J L. A proximal iteration for deconvolving Poisson noisy images using sparse representations [J]. IEEE Transactions on Image Processing, 2009, 18(2): 310–321.

    Article  MathSciNet  Google Scholar 

  19. AZZARI L, FOI A. Variance stabilization in Poisson image deblurring [C]//2017 IEEE 14th International Symposium on Biomedical Imaging. Melbourne, VIC: IEEE, 2017, 728–731.

    Chapter  Google Scholar 

  20. ROND A, GIRYES R, ELAD M. Poisson inverse problems by the plug-and-play scheme [J]. Journal of Visual Communication and Image Representation, 2016, 41: 96–108.

    Article  Google Scholar 

  21. KOLACZYK E D. Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds [J]. Statistica Sinica, 1999, 9: 119–135.

    MathSciNet  MATH  Google Scholar 

  22. NOWAK R D, BARANIUK R G. Wavelet-domain filtering for photon imaging systems [J]. IEEE Transactions on Image Processing, 1999, 8(5): 666–678.

    Article  Google Scholar 

  23. CHARLES C, RASSON J P. Wavelet denoising of Poisson-distributed data and applications [J]. Computational statistics & Data Analysis, 2003, 43: 139–148.

    Article  MathSciNet  Google Scholar 

  24. YANG S J, LEE B U. Poisson-Gaussian noise reduction using the hidden Markov model in contourlet domain for fluorescence microscopy images [J]. PLoS ONE, 2015, 10(9): e0136964.

    Article  Google Scholar 

  25. ZHANG M H, ZHANG F Q, LIU Q G, et al. VST-Net: Variance-stabilizing transformation inspired network for Poisson denoising [J]. Journal of Visual Communication and Image Representation, 2019, 62: 12–22.

    Article  Google Scholar 

  26. ANSCOMBE F J. The transformation of Poisson, binomial and negative-binomial data [J]. Biometrika, 1948, 35(3/4): 246–254.

    Article  MathSciNet  Google Scholar 

  27. DONOHO D L. Nonlinear wavelet methods for recovery of signals, densities, and spectra from indirect and noisy data [C]//Proceedings of Symposia in Applied Mathematics. Providence: American Mathematical Society, 1993, 47: 173–205.

    Google Scholar 

  28. MÄKITALO M, FOI A. Optimal inversion of the Anscombe transformation in low-count Poisson image denoising [J]. IEEE Transactions on Image Processing, 2011, 20(1): 99–109.

    Article  MathSciNet  Google Scholar 

  29. FRYZLEWICZ P, NASON G P. A Haar-Fisz algorithm for Poisson intensity estimation [J]. Journal of Computational and Graphical Statistics, 2004, 13(3): 621–638.

    Article  MathSciNet  Google Scholar 

  30. ZHANG B, FADILI J M, STARCK J L. Wavelets ridgelets and curvelets for Poisson noise removal [J]. IEEE Transactions on Image Processing, 2008, 17(7): 1093–1108.

    Article  MathSciNet  Google Scholar 

  31. AZZARI L, FOI A. Variance stabilization for noisy+estimate combination in iterative Poisson denoising [J]. IEEE Signal Processing Letters, 2016, 23(8): 1086–1090.

    Article  Google Scholar 

  32. WILLETT R. Multiscale analysis of photon-limited astronomical images [J]. Statistical Challenges in Modern Astronomy IV, 2007, 371: 247–264.

    Google Scholar 

  33. WU Z L, GAO H X, MA G, et al. A dual adaptive regularization method to remove mixed Gaussian-Poisson noise [J]. Lecture Notes in Computer Science, 2016, 10116: 206–221.

    Article  Google Scholar 

  34. HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016, 770–778.

    Google Scholar 

  35. ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155.

    Article  MathSciNet  Google Scholar 

  36. LIU P, FANG R G. Learning pixel-distribution prior with wider convolution for image denoising [EB/OL]. [2020-01-30]. https://arxiv.org/pdf/1707.09135.pdf.

  37. KIM J, LEE J K, LEE K M. Accurate image superresolution using very deep convolutional networks [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016, 1646–1654.

    Google Scholar 

  38. LI J Z, LUISIER F, BLU T. Deconvolution of Poissonian images with the PURE-LET approach [C]//Proceedings of the 23rd IEEE International Conference on Image Processing (ICIP). Phoenix, Arizona: IEEE, 2016, 2708–2712.

    Google Scholar 

  39. LEFKIMMIATIS S, UNSER M. Poisson image reconstruction with Hessian Schatten-norm regularization [J]. IEEE Transactions on Image Processing, 2013, 22(11): 4314–4327.

    Article  MathSciNet  Google Scholar 

  40. WANG N N, SHI W X, FAN C E, et al. An improved nonlocal sparse regularization-based image deblurring via novel similarity criteria [J]. International Journal of Advanced Robotic Systems, 2018, 15(3): 1729881418783119.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghui Zhang  (张明辉).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61661031)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Zheng, H., Zhang, F. et al. Poisson Image Restoration via Transformed Network. J. Shanghai Jiaotong Univ. (Sci.) 26, 857–868 (2021). https://doi.org/10.1007/s12204-020-2235-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-020-2235-7

Key words

CLC number

Document code

Navigation