Skip to main content

Distribution-Transformed Network for Impulse Noise Removal

Abstract

This work aims to explore the restoration of images corrupted by impulse noise via distribution-transformed network (DTN), which utilizes convolutional neural network to learn pixel-distribution features from noisy images. Compared with the traditional median-based algorithms, it avoids the complicated pre-processing procedure and directly tackles the original image. Additionally, different from the traditional methods utilizing the spatial neighbor information around the pixels or patches and optimizing in an iterative manner, this work turns to capture the pixel-level distribution information by means of wide and transformed network learning. DTN fits the distribution at pixel-level with larger receptions and more channels. Furthermore, DTN utilities a residual block without batch normalization layer to generate a good estimate. In terms of edge preservation and noise suppression, the proposed DTN consistently achieves significantly superior performance than current state-of-the-art methods, particularly at extreme noise densities.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    ABREU E, LIGHTSTONE M, MITRA S K, et al. A new efficient approach for the removal of impulse noise from highly corrupted images [J]. IEEE Transactions on Image Processing, 1996, 5(6): 1012–1025.

    Article  Google Scholar 

  2. [2]

    NODES T A, GALLAGHER N C. Median filters: Some modifications and their properties [J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1982, 30(5): 739–746.

    Article  Google Scholar 

  3. [3]

    WANG Z, ZHANG D. Progressive switching median filter for the removal of impulse noise from highly corrupted images [J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 1999, 46(1): 78–80.

    Article  Google Scholar 

  4. [4]

    CHEN T, MA K K, CHEN L H. Tri-state median filter for image denoising [J]. IEEE Transactions on Image Processing, 1999, 8(12): 1834–1838.

    Article  Google Scholar 

  5. [5]

    CHEN T, WU H R. Space variant median filters for the restoration of impulse noise corrupted images [J]. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 2001, 48(8): 784–789.

    Article  Google Scholar 

  6. [6]

    NIKOLOVA M. A variational approach to remove outliers and impulse noise [J]. Journal of Mathematical Imaging and Vision, 2004, 20: 99–120.

    MathSciNet  Article  Google Scholar 

  7. [7]

    ELAD M, AHARON M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736–3745.

    MathSciNet  Article  Google Scholar 

  8. [8]

    WANG S S, LIU Q G, XIA Y, et al. Dictionary learning based impulse noise removal via L1–L1 minimization [J]. Signal Processing, 2013, 93(9): 2696–2708.

    Article  Google Scholar 

  9. [9]

    CHEN C L P, LIU L C, CHEN L, et al. Weighted couple sparse representation with classified regularization for impulse noise removal [J]. IEEE Transactions on Image Processing, 2015, 24(11): 4014–4026.

    MathSciNet  Article  Google Scholar 

  10. [10]

    WOHLBERG B. Convolutional sparse representations as an image model for impulse noise restoration [C]//IEEE 12th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). Bordeaux, France: IEEE, 2016: 1–5.

    Google Scholar 

  11. [11]

    JIN K H, YE J C. Sparse and low-rank decomposition of a hankel structured matrix for impulse noise removal [J]. IEEE Transactions on Image Processing, 2018, 27(3): 1448–1461.

    MathSciNet  Article  Google Scholar 

  12. [12]

    HUANG T, DONG W S, XIE X M, et al. Mixed noise removal via Laplacian scale mixture modeling and non-local low-rank approximation [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3171–3186.

    MathSciNet  Article  Google Scholar 

  13. [13]

    CHEN L, LIU L C, CHEN C L P. A robust bi-sparsity model with non-local regularization for mixed noise reduction [J]. Information Sciences, 2016, 354: 101–111.

    Article  Google Scholar 

  14. [14]

    ZHOU Y Y, LIN M S, XU S, et al. An image denoising algorithm for mixed noise combining nonlocal means filter and sparse representation technique [J]. Journal of Visual Communication and Image Representation, 2016, 41: 74–86.

    Article  Google Scholar 

  15. [15]

    LIU L C, CHEN C L P, YOU X G, et al. Mixed noise removal via robust constrained sparse representation [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(9): 2177–2189.

    Article  Google Scholar 

  16. [16]

    LIU L C, CHEN L, CHEN C L P, et al. Weighted joint sparse representation for removing mixed noise in image [J]. IEEE Transactions on Cybernetics, 2017, 47(3): 600–611.

    Article  Google Scholar 

  17. [17]

    JAIN V, SEUNG H S. Natural image denoising with convolutional networks [C]//Proceedings of the 21st International Conference on Neural Information Processing Systems. New York: Curran Associates, 2008: 769–776.

    Google Scholar 

  18. [18]

    XIE J Y, XU L L, CHEN E H. Image denoising and inpainting with deep neural networks [C]//Proceedings of the 25th International Conference on Neural Information Processing Systems: Volume 1. New York: Curran Associates, 2012: 341–349.

    Chapter  Google Scholar 

  19. [19]

    BURGER H C, SCHULER C J, HARMELING S. Image denoising: Can plain neural networks compete with BM3D? [C]//IEEE Conference on Computer Vision and Pattern Recognition. Providence, RI, USA: IEEE, 2012: 2392–2399.

    Google Scholar 

  20. [20]

    DABOV K, FOI A, KATKOVNIK V, et al. BM3D image denoising with shape-adaptive principal component analysis [EB/OL]. (2009-03-20) [2019-03-13]. http://hal.cirad.fr/SPARS09/inria-00369582.

  21. [21]

    ZHANG K, ZUO W M, CHEN Y J, et al. Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising [J]. IEEE Transactions on Image Processing, 2017, 26(7): 3142–3155.

    MathSciNet  Article  Google Scholar 

  22. [22]

    HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: IEEE, 2016: 770–778.

    Google Scholar 

  23. [23]

    NAIR V, HINTON G E. Rectified linear units improve restricted boltzmann machines [C]//27th International Conference on Machine Learning. Haifa, Israel: IMLS, 2010: 807–814.

    Google Scholar 

  24. [24]

    LIU P, FANG R G. Learning pixel-distribution prior with wider convolution for image denoising [EB/OL]. (2017-07-28) [2019-03-13]. http://arxiv.org/abs/1707.09135.

  25. [25]

    LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution [C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017: 1132–1140.

    Google Scholar 

  26. [26]

    TONG T, LI G, LIU X J, et al. Image superresolution using dense skip connections [C]//IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 4809–4817.

    Chapter  Google Scholar 

  27. [27]

    BAE W, YOO J, YE J C. Beyond deep residual learning for image restoration: Persistent homology-guided manifold simplification [C]//IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Honolulu, USA: IEEE, 2017: 1141–1149.

    Google Scholar 

  28. [28]

    MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics [C]//IEEE International Conference on Computer Vision (ICCV). Vancouver, Canada: IEEE, 2001: 416–423.

    Google Scholar 

  29. [29]

    KIM J, LEE J K, LEE K M. Accurate image superresolution using very deep convolutional networks [C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, USA: IEEE, 2016: 1646–1654.

    Google Scholar 

  30. [30]

    RODRIGUEZ P, WOHLBERG B. Efficient minimization method for a generalized total variation functional [J]. IEEE Transactions on Image Processing, 2009, 18(2): 322–332.

    MathSciNet  Article  Google Scholar 

  31. [31]

    ZHANG M H, LIU Y L, LI G Y, et al. Iterative scheme-inspired network for impulse noise removal [J]. Pattern Analysis and Applications, 2020, 23: 135–145.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Qiegen Liu.

Additional information

Foundation item: the National Natural Science Founding of China (Nos. 61362001, 61362009 and 61661031), the Jiangxi Advanced Project for Post-Doctoral Research Fund (No. 2014KY02), the Young and Key Scientist Training Plan of Jiangxi Province (Nos. 20162BCB23019, 20171BBH80023 and GJJ170566), and the Fund for Postgraduate of Nanchang University (No. CX2018144)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, G., Zhang, F. & Liu, Q. Distribution-Transformed Network for Impulse Noise Removal. J. Shanghai Jiaotong Univ. (Sci.) 26, 543–553 (2021). https://doi.org/10.1007/s12204-020-2203-2

Download citation

Key words

  • impulse noise removal
  • deep learning
  • convolutional neural network
  • distribution transformation

CLC number

  • TN 911.73

Document code

  • A