Skip to main content
Log in

Test of Friction Parameters in Bulk Metal Forming Based on Forward Extrusion Processes

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Existing methods for examining the friction parameters in metal forming all have advantages and disadvantages. Based on the theory of plasticity, the current study established quantitative correlations among friction coefficient/factor, yield stress of the workpiece material, load and die geometry in the forward extrusion with a conical die, and then designed a procedure for testing the friction parameters in forming processes using the correlations. A series of extrusion experiments along with the numerical simulations, using AA 7050 specimens under various lubricating conditions, were carried out. The results proved that the method can obtain the friction coefficient/factor with an acceptable precision. Theoretically, since the effects of material properties, forming velocity, temperature and surficial condition, etc., on the deformation can be directly considered in the operation, this method is applicable to a wide range of material types and forming conditions. To avoid the occurrence of “barreling phenomenon” under large load which may lead to failure of the operation, it is recommended that half angle of the conical die ranges from 5 to 10 degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FERESHTEH-SANIEE F, PILLINGER I, HARTLEY P. Friction modelling for the physical simulation of the bulk metal forming processes [J]. Journal of Materials Processing Technology, 2004, 153/154: 151–156.

    Article  Google Scholar 

  2. HU C L, DING T R, OU H G, et al. Effect of tooling surface on friction conditions in cold forging of an aluminum alloy [J]. Tribology International, 2019, 131: 353–362.

    Article  Google Scholar 

  3. GONTARZ A, DZIUBIŃSKA A, OKO Ń Ł. Determination of friction coefficients at elevated temperatures for some Al, Mg and Ti alloys [J]. Archives of Metallurgy and Materials, 2011, 56(2): 379–384.

    Article  Google Scholar 

  4. NIELSEN C V, BAY N. Review of friction modeling in metal forming processes [J]. Journal of Materials Processing Technology, 2018, 255: 234–241.

    Article  Google Scholar 

  5. JOUN M S, MOON H G, CHOI I S, et al. Effects of friction laws on metal forming processes [J]. Tribology International, 2009, 42(2): 311–319.

    Article  Google Scholar 

  6. CAMACHO A M, TORRALVO A I, BERNAL C, et al. Investigations on friction factors in metal forming of industrial alloys [J]. Procedia Engineering, 2013, 63: 564–572.

    Article  Google Scholar 

  7. PETERSEN S B, MARTINS P A F, BAY N. Friction in bulk metal forming: a general friction model vs. the law of constant friction [J]. Journal of Materials Processing Technology, 1997, 66(1/2/3): 186–194.

    Article  Google Scholar 

  8. SOFUOGLU H, GEDIKLI H. Determination of friction coefficient encountered in large deformation processes [J]. Tribology International, 2002, 35(1): 27–34.

    Article  Google Scholar 

  9. ZHANG D W, YANG H, LI H W, et al. Friction factor evaluation by FEM and experiment for TA 15 titanium alloy in isothermal forming process [J]. The International Journal of Advanced Manufacturing Technology, 2012, 60(5/6/7/8): 527–536.

    Article  Google Scholar 

  10. WANG J P. A new evaluation to friction analysis for the ring test [J]. International Journal of Machine Tools and Manufacture, 2001, 41(3): 311–324.

    Article  Google Scholar 

  11. CRISTINO V A M, ROSA P A R, MARTINS P A F. Surface roughness and material strength of tribo-pairs in ring compression tests [J]. Tribology International, 2011, 44(2): 134–143.

    Article  Google Scholar 

  12. ROBINSON T, OU H, ARMSTRONG C G. Study on ring compression test using physical modelling and FE simulation [J]. Journal of Materials Processing Technology, 2004, 153/154: 54–59.

    Article  Google Scholar 

  13. HU C L, YIN Q, ZHAO Z, et al. A new measuring method for friction factor by using ring with inner boss compression test [J]. International Journal of Mechanical Sciences, 2017, 123: 133–140.

    Article  Google Scholar 

  14. LIN S Y. Investigation of the effect of dissimilar interface frictional properties on the process of hollow cylinder upsetting [J]. Journal of Materials Processing Technology, 1997, 66(1/2/3): 204–215.

    Article  Google Scholar 

  15. TAN X, MARTINS P A F, BAY N, et al. Friction studies at different normal pressures with alternative ring-compression tests [J]. Journal of Materials Processing Technology, 1998, 80/81: 292–297.

    Article  Google Scholar 

  16. NOH J H, MIN K H, HWANG B B. Deformation characteristics at contact interface in ring compression [J]. Tribology International, 2011, 44(9): 947–955.

    Article  Google Scholar 

  17. ZHU Y C, ZENG W D, MA X, et al. Determination of the friction factor of Ti-6Al-4V titanium alloy in hot forging by means of ring-compression test using FEM [J]. Tribology International, 2011, 44(12): 2074–2080.

    Article  Google Scholar 

  18. ANDERSSON K, KIVIVUORI S, KORHONEN A S. Effect of the heat-transfer coefficient in ringcompression tests [J]. Journal of Materials Processing Technology, 1996, 62(1/2/3): 10–13.

    Article  Google Scholar 

  19. HARTLEY R S, CLOETE T J, NURICK G N. An experimental assessment of friction effects in the split Hopkinson pressure bar using the ring compression test [J]. International Journal of Impact Engineering, 2007, 34(10): 1705–1728.

    Article  Google Scholar 

  20. LAZZAROTTO L, DUBAR L, DUBOIS A, et al. Identification of Coulomb’s friction coefficient in real contact conditions applied to a wire drawing process [J]. Wear, 1997, 211(1): 54–63.

    Article  Google Scholar 

  21. KANG S H, LEE K S, LEE Y S. Evaluation of interfacial friction condition by boss and rib test based on backward extrusion [J]. International Journal of Mechanical Sciences, 2011, 53(1): 59–64.

    Article  MathSciNet  Google Scholar 

  22. HUNG J C, HUANG C C. Evaluation of friction in ultrasonic vibration-assisted press forging using double cup extrusion tests [J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(12): 2103–2108.

    Article  Google Scholar 

  23. PETERSEN S B, MARTINS P A F, BAY N. An alternative ring-test geometry for the evaluation of friction under low normal pressure [J]. Journal of Materials Processing Technology, 1998, 79(1/2/3): 14–24.

    Article  Google Scholar 

  24. GROCHE P, MÜLLER C, STAHLMANN J, et al. Mechanical conditions in bulk metal forming tribometers: Part one [J]. Tribology International, 2013, 62: 223–231.

    Article  Google Scholar 

  25. LE H R, SUTCLIFFE M P F. Measurements of friction in strip drawing under thin film lubrication [J]. Tribology International, 2002, 35(2): 123–128.

    Article  Google Scholar 

  26. ZHANG Q, FELDER E, BRUSCHI S. Evaluation of friction condition in cold forging by using T-shape compression test [J]. Journal of Materials Processing Technology, 2009, 209(17): 5720–5729.

    Article  Google Scholar 

  27. IM Y T, KANG S H, CHEON J S, et al. Finite element simulation of tip test with an aluminum alloy [J]. Journal of Materials Processing Technology, 2004, 157/158: 171–176.

    Article  Google Scholar 

  28. SOFUOGLU H, RASTY J. On the measurement of friction coefficient utilizing the ring compression test [J]. Tribology International, 1999, 32(6): 327–335.

    Article  Google Scholar 

  29. GARIETY M, NGAILE G, ALTAN T. Evaluation of new cold forging lubricants without zinc phosphate precoat [J]. International Journal of Machine Tools and Manufacture, 2007, 47(3/4): 673–681.

    Article  Google Scholar 

  30. SYAHRULLAIL S, ZUBIL B M, AZWADI C S N, et al. Experimental evaluation of palm oil as lubricant in cold forward extrusion process [J]. International Journal of Mechanical Sciences, 2011, 53(7): 549–555.

    Article  Google Scholar 

  31. WANG Z G, ZHANG W Z. A newly devised tribo-test for evaluating lubricity of conversion films for cold forging [J]. Journal of Plasticity Engineering, 2002, 9(4): 56–59. (in Chinese).

    Google Scholar 

  32. BAKHSHI-JOOYBARI M. A theoretical and experimental study of friction in metal forming by the use of the forward extrusion process [J]. Journal of Materials Processing Technology, 2002, 125/126: 369–374.

    Article  Google Scholar 

  33. GAVRUS A, FRANCILLETTE H, PHAM D T. An optimal forward extrusion device proposed for numerical and experimental analysis of materials tribological properties corresponding to bulk forming processes [J]. Tribology International, 2012, 47: 105–121.

    Article  Google Scholar 

  34. ZHANG D W, OU H G. Relationship between friction parameters in a Coulomb-Tresca friction model for bulk metal forming [J]. Tribology International, 2016, 95: 13–18.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wen  (温彤).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 51575066), and the Natural Science Foundation of Chongqing (No. cstc2018jcyjAX0159)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wen, T., Liu, K. et al. Test of Friction Parameters in Bulk Metal Forming Based on Forward Extrusion Processes. J. Shanghai Jiaotong Univ. (Sci.) 25, 333–339 (2020). https://doi.org/10.1007/s12204-020-2162-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-020-2162-7

Key words

CLC number

Document code

Navigation