Skip to main content
Log in

Theoretical Modelling of Cascaded Er3+-Doped, Tm3+-Doped and Nd3+-Doped Fibers for 0.4 to 2.0 µm Emission Spectra

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

We present a cascaded system designed with Er3+-doped, Tm3+-doped and Nd3+-doped fibers to realize amplified spontaneous emission (ASE) spectra covering 0.4–2.0 µm. The system is excited with a pump laser emitting 808 nm photons with 500 mW pump power. The emission spectra of the cascaded system covering 0.4–2.0 µm are realized with the Er3+, Tm3+ and Nd3+ ion doping densities optimized to 8 × 1019, 2 × 1020 and 8 × 1020 ion/m3, respectively, and the fiber length optimized to 1m. Numerical methods reveal that the peak ASE power for the cascaded system can reach 20.9 mW. A minimum ASE power of 4.39 mW is attainable. Using numerical calculations and analytical techniques, we provide a detailed insight into optimized Er3+-doped, Tm3+-doped and Nd3+-doped fiber lengths and their doping concentrations for ASE power spectra covering 0.4–2.0 µm. We believe that the cascaded system can potentially provide significant applications in various optical fields which include but not limited to wavelength-division multiplexing, various optical communications and other salient medical imaging processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MEARS R J, REEKIE L, JAUNCEY I M, et al. Low-noise erbium-doped fiber amplifier operating at 1.54 µm[J]. Electronics Letters, 1987, 23(19): 1026–1028.

    Article  Google Scholar 

  2. DESURVIRE E, SIMPSON J R, BECKER P C. High-gain erbium-doped travelling-wave fiber amplifier [J]. Optics Letters, 1987, 12(11): 888–890.

    Article  Google Scholar 

  3. AGRAWAL G P. Fiber-optic communication systems [M]. 4th ed. New York, USA: Wiley, 2010.

    Book  Google Scholar 

  4. DIGONNET M J F. Rare-earth-doped fiber lasers and amplifiers [M]. 2nd ed. New York, USA: Marcel Dekker, Inc., 2001.

    Book  Google Scholar 

  5. FLORIDIA C, CARVALHO M T, LÜTHI S R, et al. Modeling the distribution gain of single- (1050 nm or 1410 nm) and dual-wavelength (800 nm+1050 nm or 800 nm+1410 nm) pumped thulium-doped fiber amplifiers [J]. Optics Letters, 2004, 29(17): 1983–1985.

    Article  Google Scholar 

  6. ZHU B, NELSON L E, STULZ S, et al. 6.4-Tb/s (160 × 42.7 Gb/s) transmission with 0.8 bit/s/Hz spectral efficiency over 32 × 100 km of fiber using CSRZ-DPSK format [C]// Optical Fiber Communication Conference. Atlanta, Georgia, USA: Optical Society of America, 2003: PD19.

    Google Scholar 

  7. KEISER G. Optical fiber communications [M]. 2nd ed. Singapore: McGraw Hill Companies Inc, 1991.

    Google Scholar 

  8. ROY F, BANIEL P, FAGES C, et al. Optimal pumping schemes for gain-band management for thulium-doped fiber amplifiers [C]// Optical Fiber Communication Conference. Anaheim, California, USA: Optical Society of America, 2001: TuQ7.

    Google Scholar 

  9. HOSSAIN N, NAJI A W, MISHRA V, et al. Numerical analysis and optimization of remotely pumped double pass erbium doped fiber amplifier [J]. IEICE Electronics Express, 2007, 4(5): 172–178.

    Article  Google Scholar 

  10. MINISCALCO W J. Rare earth doped fiber lasers and amplifiers: Optical and electronic properties of rare earth ions in glasses [M]. New York, USA: Marcel Dekker, 1993.

    Google Scholar 

  11. YAM S S H, KIM J. Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2006, 12(4): 797–803.

    Article  Google Scholar 

  12. ALLEN R, ESTEROWITZ L, AGGARWAL I. An efficient 1.46 µm thulium fiber laser via a cascade process [J]. IEEE Journal of Quantum Electronics, 1993, 29(2): 303–306.

    Article  Google Scholar 

  13. EICHHORN M. Numerical modeling of Tm-doped double-clad fluoride fiber amplifiers [J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1574–1581.

    Article  Google Scholar 

  14. BASTOS-FILHO C J A, MARTINS-FILHO J F, GOMES A S L. 38 dB gain from double-pass singlepump thulium doped fiber amplifier [C]//IEEE Microwave and Optoelectronics Conference. Foz do Iguacu, Brazil: IEEE, 2003: 125–128.

    Google Scholar 

  15. PETERKA P, FAURE B, BLANCE W, et al. Theoretical modelling of S-band thulium-doped silica fibre amplifiers [J]. Optical and Quantum Electronics, 2004, 36(1/2/3): 201–212.

    Article  Google Scholar 

  16. KASAMATSU T, YANO Y, ONO T. 1.49-µm-band gain-shifted thulium-doped fiber amplifier for WDM transmission systems [J]. Journal of Lightwave Technology, 2002, 20(10): 1826–1838.

    Article  Google Scholar 

  17. SAKAMOTO T. S-band fiber optical amplifiers [C]//Optical Fiber Communication Conference. Anaheim, California, USA: Optical Society of America, 2001: TuQ1.

    Google Scholar 

  18. CARTER J N, SMART R G, TROPPER A C, et al. Thulium-doped fluorozirconate fiber lasers [J]. Journal of Non-Crystalline Solid, 1992, 140: 10–15.

    Article  Google Scholar 

  19. JACKSON S D, KING T A. Theoretical modeling of Tm-doped silica fiber lasers [J]. Journal of Lightweight Technology, 1999, 17(5): 948–956.

    Article  Google Scholar 

  20. ZEMON S, PEDERSON G, LAMBERT G, et al. Excited state absorption cross section and amplifier modelling in the 1300nm region of Nd-doped glasses [J]. IEEE Photonics Technology Letters, 1992, 4(3): 244–247.

    Article  Google Scholar 

  21. ZEMON S, PEDERSEN G, LAMBERT G, et al. Excited-state-absorption cross sections and amplifier modeling in the 1 300-nm region for Nd-doped glasses [J]. IEEE Photonics Technology Letters, 1992, 4(3): 244–247.

    Article  Google Scholar 

  22. MINISCALCO W J. Rare-earth-doped fiber lasers and amplifiers: Optical and electronic properties of rare earth ions in glasses [M]. 2nd ed. New York, USA: Marcel Dekker, Inc., 2001.

    Google Scholar 

  23. MCCUMBER D E. Einstein relations connecting broadband emission and absorption spectra [J]. Physical Revision A, 1964, 136(4): 954–957.

    Article  Google Scholar 

  24. GILES C R, DESURVIRE E. Propagation of signal and noise in concatenated erbium-doped fiber optical amplifiers [J]. Journal of Lightwave Technology, 1991, 9(2): 147–154.

    Article  Google Scholar 

  25. OLSHANSKY R. Noise figure for erbium-doped optical fiber amplifiers [J]. Electronics Letters, 1988, 24(22): 1363–1364.

    Article  Google Scholar 

  26. MACLOED H A. Thin-film optical filters [M]. 4th ed. Boca Raton, FL, USA: Taylor and Francis Group, 2010.

    Book  Google Scholar 

  27. KNITTL Z, Optics of thin films [M]. London, UK: Wiley, 1976.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Nkonde.

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 60377023 and 60672017), the Program for New Century Excellent Talents in Universities (NCET), and the Shanghai Optical Science and Technology Project (No. 05DZ22009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkonde, S., Jiang, C. Theoretical Modelling of Cascaded Er3+-Doped, Tm3+-Doped and Nd3+-Doped Fibers for 0.4 to 2.0 µm Emission Spectra. J. Shanghai Jiaotong Univ. (Sci.) 24, 754–762 (2019). https://doi.org/10.1007/s12204-019-2122-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-019-2122-2

Key words

CLC number

Document code

Navigation