Skip to main content
Log in

Lasing Frequency Up-Conversion by Using Thermal Population

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

We theoretically demonstrate a model which can be used to analyze frequency up-conversion of a laser wavelength by using thermal population. The proposed model uses a rate equation model of ytterbium-doped fiber with thermal population effect. The rate and power propagation equations are set up and numerically analyzed to elucidate the dependence of frequency up-conversion efficiency and thermal-optical conversion efficiency on ambient thermal power. The analytical techniques and numerical results show that using pump laser at 1 000 nm, the wavelength can be converted into 900 nm with an up-conversion quantum efficiency of about 99.97% and a cooling efficiency of about 11.1%. This theoretical model is a promising candidate for vast applications in energy-efficient laser and energy-utilizing field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MUNGAN C E, BUCHWALD M I, EDWARDS B C, et al. Internal laser cooling of Yb3+-doped glass measured between 100 and 300K [J]. Applied Physics Letters, 1997, 71(11): 1458–1460.

    Article  Google Scholar 

  2. LUO X, EISAMAN M D, GOSNELL T R. Laser cooling of a solid by 21 K staring from room temperature [J]. Optics Letters, 1998, 23(8): 639–641.

    Article  Google Scholar 

  3. EDWARDS B C, ANDERSON J E, EPSTEIN R I, et al. Demonstration of a solid-state optical cooler: An approach to cryogenic refrigeration [J]. Journal of Applied Physics, 1999, 86(11): 6489–6493.

    Article  Google Scholar 

  4. RAYNERA, FRIESEME J, TRUSCOTT A G, et al. Laser cooling of a solid from ambient temperature [J]. Journal of Modern Optics, 2001, 48(1): 103–114.

    Article  Google Scholar 

  5. FERNÁNDEZ J, MENDIOROZ A, GARCÍA A J, et al. Anti-Stokes laser-induced internal cooling of Yb3+-Doped glasses [J]. Physical Review B, 2000, 62(5): 3213–3217.

    Article  Google Scholar 

  6. HOYT C W, HASSELBECK M P, SHEIK-BAHAEM, et al. Advances in laser cooling of thulium-doped glass [J]. Journal of the Optical Society of America B, 2003, 20(5): 1066–1074.

    Article  Google Scholar 

  7. THIEDE J, DISTEL J, GREENFIELD S R, et al. Cooling to 208 K by optical refrigeration [J]. Applied Physics Letters, 2005, 86: 154107.

    Article  Google Scholar 

  8. RUAN X L, KAVIANY M. Advances in laser cooling of solids [J]. Journal of Heat Transfer, 2007, 129(1): 3–10.

    Article  Google Scholar 

  9. EPSTEIN R, SHEIK-BAHAE M. Optical refrigeration: Science and applications of laser cooling of solids [M]. Weinheim, Germany: Wiley-VCH, 2009.

    Book  Google Scholar 

  10. RUAN X L, KAVIANY M. Enhanced nonradiative relaxation and photoluminescence quenching in random, doped nanocrystalline powders [J]. Journal of Applied Physics, 2005, 97: 104331.

    Article  Google Scholar 

  11. PASK H M, CARMAN R J, HANNA D C, et al. Ytterbium-doped silica fiber lasers: Versatile sources for the 1–1.2 μm region [J]. IEEE Journal of Selected Topics in Quantum Electronics, 1995, 1(1): 2–13.

    Article  Google Scholar 

  12. PASCHOTTA R, NILSSON J, BARBER P R, et al. Lifetime quenching in Yb-doped fibres [J]. Optics Communications, 1997, 136: 375–378.

    Article  Google Scholar 

  13. SELETSKIY D V, EPSTEIN R, SHEIK-BAHAE M. Laser cooling in solids: Advances and prospects [J]. Reports on Progress in Physics, 2016, 79(9): 096401.

    Article  Google Scholar 

  14. PIEL A. Plasma physics: An introduction to the laboratory, space, and fusion plasmas [M]. Berlin, Germany: Springer, 2010

    Book  Google Scholar 

  15. BURSHTEIN Z, KALISKY Y, LEVY S Z, et. al. Impurity local phonon nonradiative quenching of Yb3+ fluorescence in ytterbium-doped silicate glasses [J]. IEEE Journal of Quantum Electronics, 2000, 36(8): 1000–1007.

    Article  Google Scholar 

  16. TANGUY E, LARAT C, POCHOLLE J P. Modelling of the erbium-ytterbium laser [J]. Optics Communications, 1998, 153(1): 172–183.

    Article  Google Scholar 

  17. HAUMESSER P H, GAUMÉ R, VIANA B, et al. Determination of laser parameters of ytterbium-doped oxide crystalline materials [J]. Journal of the Optical Society of America B, 2002, 19(10): 2365–2375.

    Article  Google Scholar 

  18. MUNGAN C E, GOSNELL T R. Laser cooling of solids [J]. Advances in Atomic, Molecular and Optical Physics, 1999, 40: 161–228.

    Article  Google Scholar 

  19. BOWMAN S R, O’CONNOR S P, BISWAL S. Ytterbium laser with reduced thermal loading [J]. IEEE Journal of Quantum Electronics, 2005, 41(12): 1510–1517.

    Article  Google Scholar 

  20. SELETSKIY D V, HEHLEN M P, EPSTEIN R I, et al. Cryogenic optical refrigeration [J]. Advances in Optics and Photonics, 2012, 4(1): 78–107.

    Article  Google Scholar 

  21. ZHUANG R Z, WANG G F. Sequential energy transfer up-conversion process in Yb3+/Er3+:SrMoO4 crystal [J]. Optic Express, 2016, 24(7): 7543–7557.

    Article  Google Scholar 

  22. SHEIK-BAHAE M, EPSTEIN R I. Optical refrigeration [J]. Nature Photonics, 2007, 1: 693–699.

    Article  Google Scholar 

  23. SHEIK-BAHAE M, IMANGHOLI B, HASSELBECK M P, et al. Advances in laser cooling of semiconductors [J]. Proceedings of the SPIE, 2006, 6115: 611518.

    Article  Google Scholar 

  24. SHEIK-BAHAE M, EPSTEIN R I. Laser cooling of solids [J]. Laser and Photonics Review, 2009, 3(1/2): 67–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampa Nkonde.

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 60377023 and 60672017), the Program for New Century Excellent Talents in Universities (NCET), and the Shanghai Optical Science and Technology Project (No. 05DZ22009)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nkonde, S., Jiang, C. Lasing Frequency Up-Conversion by Using Thermal Population. J. Shanghai Jiaotong Univ. (Sci.) 24, 579–583 (2019). https://doi.org/10.1007/s12204-019-2116-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-019-2116-0

Key words

CLC number

Document code

Navigation