Skip to main content

Implementation Details for the Phase Field Approaches to Fracture

Abstract

Phase field description of fracture is a very promising approach for simulating crack initiation, propagation, merging and branching. This method greatly reduces the implementation complexity, compared with discrete descriptions of cracks. In this work, we provide an overview of phase field models for quasistatic and dynamic cases. Afterward, we present useful vectors and matrices for the implementation of this method in two and three dimensions.

This is a preview of subscription content, access via your institution.

References

  1. LANDAU L D, LIFSHITZ E M. Statistical physics [M]. Oxford: Pergamon Press, 1980.

    MATH  Google Scholar 

  2. ARANSON I, KALATSKY V, VINOKUR V. Continuum field description of crack propagation [J]. Physical Review Letters, 2000, 85(1): 118.

    Article  Google Scholar 

  3. KARMA A, KESSLER D A, LEVINE H. Phase-field model of mode iii dynamic fracture [J]. Physical Review Letters, 2001, 87(4): 045501.

    Article  Google Scholar 

  4. HENRY H, LEVINE H. Dynamic instabilities of fracture under biaxial strain using a phase field model [J]. Physical Review Letters, 2004, 93(10): 105504.

    Article  Google Scholar 

  5. AMBATI M, GERASIMOV T, DE LORENZIS L. A review on phase-field models of brittle fracture and a new fast hybrid formulation [J]. Computational Mechanics, 2015, 55(2): 383–405.

    MathSciNet  Article  MATH  Google Scholar 

  6. FRANCFORT G A, MARIGO J J. Revisiting brittle fracture as an energy minimization problem [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(8): 1319–1342.

    MathSciNet  Article  MATH  Google Scholar 

  7. BOURDIN B, FRANCFORT G A, MARIGO J J. Numerical experiments in revisited brittle fracture [J]. Journal of the Mechanics and Physics of Solids, 2000, 48(4): 797–826.

    MathSciNet  Article  MATH  Google Scholar 

  8. BOURDIN B. Numerical implementation of the variational formulation for quasi-static brittle fracture [J]. Interfaces and Free Boundaries, 2007, 9(3): 411–430.

    MathSciNet  Article  MATH  Google Scholar 

  9. BOURDIN B, MARIGO J J, MAURINI C, et al. Morphogenesis and propagation of complex cracks induced by thermal shocks [J]. Physical Review Letters, 2014, 112: 014301.

    Article  Google Scholar 

  10. TANNÉ E, LI T, BOURDIN B, et al. Crack nucleation in variational phase-field models of brittle fracture [J]. Journal of the Mechanics and Physics of Solids, 2018, 110: 80–99.

    MathSciNet  Article  Google Scholar 

  11. BORDEN M J, HUGHES T J, LANDIS C M, et al. A higher-order phase-field model for brittle fracture: Formulation and analysis within the isogeometric analysis framework [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 273: 100–118.

    MathSciNet  Article  MATH  Google Scholar 

  12. BORDEN M J. Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture [D]. Austin: University of Texas at Austin, 2012.

    Google Scholar 

  13. SARGADO J M, KEILEGAVLEN E, BERRE I, et al. High-accuracy phasefield models for brittle fracture based on a new family of degradation functions [J]. Journal of the Mechanics and Physics of Solids, 2017. https://doi.org/10.1016/j.jmps.2017.10.015 (published online).

    Google Scholar 

  14. AMOR H, MARIGO J J, MAURINI C. Regularized formulation of the variational brittle fracture with unilateral contact: Numerical experiments [J]. Journal of the Mechanics and Physics of Solids, 2009, 57: 1209–1229.

    Article  MATH  Google Scholar 

  15. MIEHE C, WELSCHINGER F, HOFACKER M. Thermodynamically consistent phase-field models of fracture: Variational principles and multi-field FE implementations [J]. International Journal for Numerical Methods in Engineering, 2010, 83: 1273–1311.

    MathSciNet  Article  MATH  Google Scholar 

  16. GERASIMOV T, DE LORENZIS L. A line search assisted monolithic approach for phase-field computing of brittle fracture [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 312: 276–303.

    MathSciNet  Article  Google Scholar 

  17. WHEELER M, WICK T, WOLLNER W. An augmented-Lagrangian method for the phasefield approach for pressurized fractures [J]. Computer Methods in Applied Mechanics and Engineering, 2014, 271: 69–85.

    MathSciNet  Article  MATH  Google Scholar 

  18. ZIAEI-RAD V, SHEN Y. Massive parallelization of the phase field formulation for crack propagation with time adaptivity [J]. Computer Methods in Applied Mechanics and Engineering, 2016, 312, 224–253.

    MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxing Shen.

Additional information

Foundation item: the National Natural Science Foundation of China (No. 11402146), and the Young 1 000 Talent Program of China

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Mollaali, M., Li, Y. et al. Implementation Details for the Phase Field Approaches to Fracture. J. Shanghai Jiaotong Univ. (Sci.) 23, 166–174 (2018). https://doi.org/10.1007/s12204-018-1922-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-018-1922-0

Key words

  • phase field approach to fracture
  • variational fracture
  • brittle fracture
  • dynamic fracture
  • variational integrator

CLC number

  • O241.82