Skip to main content

Electronic structures and magneto-transport properties of co-based Heusler alloy based magneto-resistance junctions

Abstract

A direct link between band structure and the ballistic transport property of full-Heusler alloys based Co2 YZ/Al/Co2 YZ trilayers (Y = Sc, Ti, V, Cr, Mn and Fe; Z = Al, Si and Ge) has been studied by firstprinciples calculations. It is found that the transport efficiency is determined primarily by three factors related to band structure: the shape of the band crossing Fermi energy E F, the distance d of the two intersection points of Co2 YZ and Al at E F, and the absolute maximum of the energy lying in the E F-crossing band, |Emax|. The transmission coefficient distribution patterns imply that the affected factor of magneto-resistance (MR) ratio is attributed to the band features around E F. In general, an intuitively illustrated diagram is proposed to clarify the relationship between the probability of electron transition and the current magnitude.

This is a preview of subscription content, access via your institution.

References

  1. GALANAKIS I, MAVROPOULOS P. Spinpolarization and electronic properties of half-metallic Heusler alloys calculated from first principles [J]. Journal of Physics: Condensed Matter, 2007, 19(31): 315213.

    Google Scholar 

  2. JOHNSON M, SILSBEE R H. Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system [J]. Physical Review B, 1987, 35(10): 4959–4972.

    Article  Google Scholar 

  3. VAN SON P C, VAN KEMPEN H, WYDER P. Boundary resistance of the ferromagneticnonferromagnetic metal interface [J]. Physical Review Letters, 1987, 58(21): 2271–2273.

    Article  Google Scholar 

  4. BINASCH G, GRüNBERG P, SAURENBACH F, et al. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange [J]. Physical Review B, 1989, 39(7): 4828–4830.

    Article  Google Scholar 

  5. YAKUSHIJI K, SAITO K, MITANI S, et al. Currentperpendicular-to-plane magnetoresistance in epitaxial Co2MnSi/Cr/Co2MnSi trilayers [J]. Applied Physics Letters, 2006, 88(22): 222504.

    Article  Google Scholar 

  6. KODAMA K, FURUBAYASHI T, SUKEGAWA H, et al. Current-perpendicular-to-plane giant magnetoresistance of a spin valve using Co2MnSi Heusler alloy electrodes [J]. Journal of Applied Physics, 2009, 105(7): 07E905.

    Article  Google Scholar 

  7. NAKATANI T M, MITANI S, FURUBAYASHI T, et al. Oscillatory antiferromagnetic interlayer exchange coupling in Co2Fe(Al0.5Si0.5)/Ag/Co2Fe(Al0.5Si0.5) films and its application to trilayer magnetoresistive sensor [J]. Applied Physics Letters, 2011, 99(18): 182505.

    Article  Google Scholar 

  8. VALET T, FERT A. Theory of the perpendicular magnetoresistance in magnetic multilayers [J]. Physical Review B, 1993, 48(10): 7099–71113.

    Article  Google Scholar 

  9. PRATT JR W P, LEE S F, SLAUGHTER J M, et al. Perpendicular giant magnetoresistances of Ag/Co multilayers [J]. Physical Review Letters, 1991, 66(23): 3060–3063.

    Article  Google Scholar 

  10. REILLYA C, PARKW SLATER R, et al. Perpendicular giant magnetoresistance of Co91Fe9/Cu exchangebiased spin-valves: Further evidence for a unified picture [J]. Journal of Magnetism and Magnetic Materials, 1999, 195(2): L269–L274.

    Article  Google Scholar 

  11. STEENWYK S D, HSU S Y, LOLOEE R, et al. Perpendicular-current exchange-biased spin-valve evidence for a short spin-diffusion length in permalloy [J]. Journal of Magnetism and Magnetic Materials, 1997, 170(1/2): L1–L6.

    Article  Google Scholar 

  12. FABIAN J, SARMA S D. Phonon-induced spin relaxation of conduction electrons in aluminum [J]. Physical Review Letters, 1999, 83(6): 1211–1214.

    Article  Google Scholar 

  13. BAI Z Q, CAI Y Q, SHEN L, et al. High-performance giant-magnetoresistance junctions based on the all-Heusler architecture with matched energy bands and Fermi surfaces [J]. Applied Physics Letters, 2013, 102(15): 152403.

    Article  Google Scholar 

  14. FENG Y, WU B, YUAN H K, et al. Structural, electronic and magnetic properties of Co2MnSi/Ag (100) interface [J]. Journal of Alloys and Compounds, 2015, 623: 29–35.

    Article  Google Scholar 

  15. KRESSE G, FURTHMüLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186.

    Article  Google Scholar 

  16. TAYLOR J, GUO H, WANG J. Ab initio modeling of quantum transport properties of molecular electronic devices [J]. Physical Review B, 2001, 63(24): 245407.

    Article  Google Scholar 

  17. WALDRON D, HANEY P, LARADE B, et al. Nonlinear spin current and magnetoresistance of molecular tunnel junctions [J]. Physical Review Letters, 2006, 96(16): 166804.

    Article  Google Scholar 

  18. LI Y, XIA J H, WANG G Z, et al. High-performance giant-magnetoresistance junction with B2-disordered Heusler alloy based Co2MnAl/Ag/Co2MnAl trilayer [J]. Journal of Applied Physics, 2015, 118(5): 053902.

    Article  Google Scholar 

  19. WURMEHL S, FECHER G H, KANDPAL H C, et al. Investigation of Co2FeSi: The Heusler compound with highest Curie temperature and magnetic moment [J]. Applied Physics Letters, 2006, 88(3): 032503.

    Article  Google Scholar 

  20. MAKINISTIAN L, FAIZ M M, PANGULURI R P, et al. On the half-metallicity of Co2FeSi Heusler alloy: Point-contact Andreev reflection spectroscopy and ab initio study [J]. Physical Review B, 2013, 87(22): 220402.

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges CHEN Hong and YUAN Hongkuan in Southwest University of China for their great help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Li.

Additional information

Foundation item: the Science and Technology Research Program of Chongqing Municipal Education Commission (No. KJ1711291)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Electronic structures and magneto-transport properties of co-based Heusler alloy based magneto-resistance junctions. J. Shanghai Jiaotong Univ. (Sci.) 22, 530–535 (2017). https://doi.org/10.1007/s12204-017-1872-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-017-1872-y

Keywords

  • Heusler alloy
  • band structure
  • magneto-transport
  • magnetic trilayer

CLC number

  • O 469

Document code

  • A