# Adomian’s Method applied to solve ordinary and partial fractional differential equations

• Lili Hao (郝丽丽)
• Xiaoyan Li (李晓艳)
• Song Liu (刘 松)
• Wei Jiang (蒋 威)
Article

## Abstract

This paper presents a method to solve the problems of solutions for integer differential and partial differential equations using the convergence of Adomian’s Method. In this paper, we firstly use the convergence of Adomian’s Method to derive the solutions of high order linear fractional equations, and then the numerical solutions for nonlinear fractional equations. we also get the solutions of two fractional reaction-diffusion equations. We can see the advantage of this method to deal with fractional differential equations.

### Keywords

fractional calculus ordinary fractional differential equations partial fractional differential equations Adomian’s method

O 175.11

## Preview

### References

1. [1]
HILFER R. Applications of fractional calculus in physics [M]. Orlando, USA: Academic Press, 1999.Google Scholar
2. [2]
SAMKO S G, KILBAS A A, MARICHEV O I. Fractional integrals and derivatives [M]. Yverdon, SWIT: Theory and Applications, Gordon and Breach, 1993.
3. [3]
PODLUBNY I. Fractional differential equations [D]. San Diego, USA: Academic Press, 1999.
4. [4]
LAKSHMIKANTHAM V, LEELA S, DEVI J V. Theory of Fractional Dynamic Systems [M]. Cambridge, UK: Cambridge University Press, 2009.
5. [5]
RIVERO M. Linear fractional differential equations with variable coefficients [J]. Applied Mathematics Letters, 2008, 21(3): 892–897.
6. [6]
RIDA S I, EI-SAYED M A. On the solutions of time fractional reaction-diffusion equation [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(12): 3847–3854.
7. [7]
JAFARIA H, NAZARIB M, KHALIQUEA C M. A new approach for solving a system of fractional partial differential equations [J]. Computers Mathematics with Applications, 2013, 20(5): 838–843.
8. [8]
DAS S, GUPTA P K, GHOSH P. An approximate solution of nonlinear fractional reaction-diffusion equation [J]. Applied Mathematical Modelling, 2011, 35(8): 4071–4076.
9. [9]
BONILLA B, RIVERO M, TRUJILO J J. On systems of linear fractional differential equations with constant coefficients [J]. Applied Mathematics with Applications, 2007, 187(1): 68–78.
10. [10]
ZHANG H, WU D Y. Variation of constant formula for time invariant and time varying Caputo fractional differential systems [J]. Journal of Mathematical Research and Applications, 2014, 34(5): 449–560.Google Scholar
11. [11]
LI C P, CHEN A, YE J J. Numerical approaches to fractional calculus and fractional ordinary differential equation [J]. Journal of Computational Physics, 2011, 230(9): 3352–3368.
12. [12]
JUMAEIE G. Laplace’s transform of fractional order via the Mittag-Leffler function and modified Riemann-Liouville derivative [J]. Applied Mathematics Letters, 2009, 22(6): 1659–1664.
13. [13]
BUTERA S, PAOLA M D. Fractional differential equations solved by using Merlin transform [J]. Communications in Nonlinear Science and Numerical Simulation, 2014, 19(7): 2220–2227.
14. [14]
AYAZ F. Solutions of the systems of differential equations by differential transform method [J]. Applied Mathematical Modelling, 2008, 147(2): 547–567.
15. [15]
CHEN W, YE L J, SUN H G. Fractional diffusion equations by Kansa method [J]. Computers Mathematics with Applications, 2010, 59(5): 1614–1620.
16. [16]
DUAN J C, LIU Z H, ZHANG F K. Analytical solution and numerical solution to end lymph equation using fractional derivative [J]. Annal of Differential Equations, 2008, 24(7): 9–12.Google Scholar
17. [17]
ADOMIAN G. Nonlinear stochastic systems theory and applications to physics [M]. Amsterdam, HOLLAND: Springer, 1989.
18. [18]
ADOMIAN G. A review of the decomposition method and some recent results for nonlinear equations [J]. Applied Mathematical Modelling, 1990, 13(7): 17–43.
19. [19]
ABBAOUI K, CHERRUAULT Y. Convergence of Adomian’s method applied to differential equations [J]. Computers Mathematics with Applications, 1994, 28(5): 103–109.
20. [20]
ABBAOUI K, CHERRUAULT Y. Adomian’s polynomial for nonlinear operators [J]. Applied Mathematical Modelling, 1996, 24(1): 59–65.
21. [21]
ABBAOUI K, CHERRUAULT Y, SENG V. Practical formulae for calculus of variable adomian polynomials [J]. Applied Mathematical Modelling, 2013, 33(2): 175–188.

© Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017

## Authors and Affiliations

• Lili Hao (郝丽丽)
• 1
• 2
• Xiaoyan Li (李晓艳)
• 1
• Song Liu (刘 松)
• 1
• Wei Jiang (蒋 威)
• 1
1. 1.Department of Mathematics ScienceAnhui UniversityHefeiChina
2. 2.Department of MathematicsEast China Normal UniversityShanghaiChina