A generalized self-consistent model for interfacial debonding behavior of fiber reinforced rubber matrix sealing composites

  • Bin Zhang (张 斌)
  • Xiaoming Yu (宇晓明)
  • Boqin Gu (顾伯勤)
Article
  • 50 Downloads

Abstract

This paper presents an experimental and numerical study of short-fiber-reinforced rubber matrix sealing composites (SFRC). The transverse tensile stress-strain curves of SFRC are obtained by experiments. Based on the generalized self-consistent method, a representative volume element (RVE) model is established, and the cohesive zone model is employed to investigate the interfacial failure behavior. The effect of interphase properties on the interfacial debonding behavior of SFRC is numerically investigated. The results indicate that an interphase thickness of 0.3 μm and an interphase elastic modulus of about 502MPa are optimal to restrain the initiation of the interfacial debonding. The interfacial debonding of SFRC mainly occurs between the matrix/interphase interface, which agrees well with results by scanning electron microscope (SEM).

Keywords

fiber rubber composites interphase interfacial debonding 

CLC number

TB 332 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    TIAN M, SU L, CAIW T, et al. Mechanical properties and reinforcement mechanisms of hydrogenated acrylonitrile butadiene rubber composites containing fibrillar silicate nanofibers and short aramid microfibers [J]. Journal of Applied Polymer Science, 2011, 120(3): 1439–1447.CrossRefGoogle Scholar
  2. [2]
    ZHANG B, GU B Q, YU X M. Failure behavior of resorcinol-formaldehyde latex coated aramid shortfiber-reinforced rubber sealing under transverse tension [J]. Journal of Applied Polymer Science, 2015, 132: 41672. DOI: 10.1002/app.41672 (published online).Google Scholar
  3. [3]
    VAUGHAN T J, MCCARTHY C T. Micromechanical modelling of the transverse damage behaviour in fibre reinforced composites [J]. Composites Science and Technology, 2011, 71(3): 388–396.CrossRefGoogle Scholar
  4. [4]
    HOBBIEBRUNKEN T, HOJO M, ADACHI T, et al. Evaluation of interfacial strength in CF/epoxies using FEM and in-situ experiments [J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(12): 2248–2256.CrossRefGoogle Scholar
  5. [5]
    CANAL L P, GONZáLEZ C, SEGURADO J, et al. Intraply fracture of fiber-reinforced composites: Microscopic mechanisms and modeling [J]. Composites Science and Technology, 2012, 72(11): 1223–1232.CrossRefGoogle Scholar
  6. [6]
    ZHANG Y Y, ZHU S W, LIU Y, et al. The mechanical and tribological properties of nitric acid-treated carbon fiber-reinforced polyoxymethylene composites [J]. Journal of Applied Polymer Science, 2015, 132: 41812. DIO: 10.1002/app.41812 (published online).Google Scholar
  7. [7]
    STARINK M J, SYNGELLAKIS S. Shear lag models for discontinuous composites: Fibre end stresses and weak interface layers [J]. Materials Science and Engineering: A, 1999, 270(2): 270–277.CrossRefGoogle Scholar
  8. [8]
    MORALEDA J, SEGURADO J, LLORCA J. Finite deformation of incompressible fiber-reinforced elastomers: A computational micromechanics approach [J]. Journal of the Mechanics and Physics of Solids, 2009, 57(9): 1596–1613.CrossRefMATHGoogle Scholar
  9. [9]
    LI X, XIA Y, LI Z, et al. Three-dimensional numerical simulations on the hyperelastic behavior of carbonblack particle filled rubbers under moderate finite deformation [J]. Computational Materials Science, 2012, 55: 157–165.CrossRefGoogle Scholar
  10. [10]
    AFONSO J C, RANALLI G. Elastic properties of three-phase composites: Analytical model based on the modified shear-lag model and the method of cells [J]. Composites Science and Technology, 2005, 65(7): 1264–1275.CrossRefGoogle Scholar
  11. [11]
    WANG X Q, ZHAO W T, FANG B, et al. Micromechanical analysis of long fiber-reinforced composites with nanoparticle incorporation into the interphase region [J]. Journal of Applied Polymer Science, 2015, 132: 41573. DOI: 10.1002/app.41573 (published online).Google Scholar
  12. [12]
    ZHU D S, GU B Q, CHEN Y. Micromechanical model of stress distribution and transfer in short-fiberreinforced elastomer matrix composite [J]. Journal of Computational and Theoretical Nanoscience, 2008, 5(8): 1546–1550.CrossRefGoogle Scholar
  13. [13]
    YUAN M N, YANY Y Q, HUANG B, et al. Effect of interface reaction on interface shear strength of SiC fiber reinforced titanium matrix composites [J]. Rare Metal Materials and Engineering, 2009, 38(8): 1321–1324.CrossRefGoogle Scholar
  14. [14]
    [14] ZHANG WX, LI L X, WANG T J. Interphase effect on the strengthening behavior of particle-reinforced metal matrix composites [J]. Computational Materials Science, 2007, 41(2): 145–155.CrossRefGoogle Scholar
  15. [15]
    JIANG C P, TONG Z H, CHEUNG Y K. A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear [J]. Mechanics of Materials, 2001, 33(5): 295–308.CrossRefGoogle Scholar
  16. [16]
    ZHANG B, GU B Q, YU X M. Prediction method for longitudinal tensile-modulus of aramid short-fiberreinforced rubber sealing composites [J]. Journal of Shanghai Jiao Tong University, 2015, 49(1): 96–100 (in Chinese).Google Scholar
  17. [17]
    HUANG Y, HU K X, CHANDRA A. A generalized self-consistent mechanics method for microcracked solids [J]. Journal of the Mechanics and Physics of Solids, 1994, 42(8): 1273–1291.CrossRefMATHGoogle Scholar
  18. [18]
    [18] GONZÁLEZ C, LLORCA J. Mechanical behavior of unidirectional fiber-reinforced polymers under transverse compression: Microscopic mechanisms and modeling [J]. Composites Science and Technology, 2007, 67(13): 2795–2806.CrossRefGoogle Scholar
  19. [19]
    SA R, YAN Y, WEI Z H, et al. Surface modification of aramid fibers by bio-inspired poly(dopamine) and epoxy functionalized silane grafting [J]. ACS Applied Materials and Interfaces, 2014, 6(23): 21730–21738.CrossRefGoogle Scholar
  20. [20]
    JIMéNEZ F L, PELLEGRINO S. Constitutive modeling of fiber composites with a soft hyperelastic matrix [J]. International Journal of Solids and Structures, 2012, 49(3): 635–647.CrossRefGoogle Scholar
  21. [21]
    YU X M, GU B Q, ZHANG B. Effects of short fiber tip geometry and inhomogeneous interphase on the stress distribution of rubber matrix sealing composites [J]. Journal of Applied Polymer Science, 2015, 132: 41638. DOI: 10.1002/app.41638 (published online).Google Scholar
  22. [22]
    SHEN L X, LI J. Effective elastic moduli of composites reinforced by particle or fiber with an inhomogeneous interphase [J]. International Journal of Solids and Structures, 2003, 40(6): 1393–1409.CrossRefMATHGoogle Scholar
  23. [23]
    KIRITSI C C, ANIFANTIS N K. Load carrying characteristics of short fiber composites containing a heterogeneous interphase region [J]. Computational Materials Science, 2001, 20(1): 86–97.CrossRefGoogle Scholar
  24. [24]
    NGABONZIZA Y, LI J, BARRY C F. Electrical conductivity and mechanical properties of multiwalled carbon nanotube-reinforced polypropylene nanocomposites [J]. Acta Mechanica, 2011, 220(1): 289–298.CrossRefMATHGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Bin Zhang (张 斌)
    • 1
    • 2
  • Xiaoming Yu (宇晓明)
    • 1
  • Boqin Gu (顾伯勤)
    • 3
  1. 1.School of Mechanical EngineeringChangshu Institute of TechnologyJiangsuChina
  2. 2.Jiangsu Key Laboratory of Recycling and Reuse Technology for Mechanical and Electronic ProductsChangshu Institute of TechnologyJiangsuChina
  3. 3.College of Mechanical and Power EngineeringNanjing Tech UniversityNanjingChina

Personalised recommendations