A method to analyze the voltage-actuation response of a pre-strained circular dielectric elastomer actuator model

  • Danhquang Tran (陈名光)
  • Jin Li (李 锦)
  • Fuzhen Xuan (轩福贞)
Article
  • 82 Downloads

Abstract

Dielectric elastomers (DEs) are the polymers capable of inducing deformation under electrical stimulation. When subject to a voltage across its thickness, the material reduces in thickness and expands in area. This paper presents a new method to analyze deformation and stress distribution response of the dielectric elastomer actuator (DEA) model under different applied voltage. An equal-biaxial pre-strained circular actuator model was built. The Yeoh strain energy potential and the collocation method are used for describing the large strain actuation response and stress distribution. The study in this paper has shown that: the stress and the stretch distributions in the passive region of the DE actuator depend on the radial distance from the center at the calculation point of the passive region and the magnitude of the applied voltage; with the same excitation applied voltage, we can get a larger deformation actuation by choosing an appropriate pre-stretch ratio; the influence of the non-ideal material has seriously affected the actual deformation of the DE actuators. This analytical model has a reference potential for the design optimization of high performance DEA systems and the model-based control of the DEA robot.

Keywords

dielectric elastomer circular actuator Yeoh model actuation 

CLC number

TB 34 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    PELRINE R, KORNBLUH R, PEI Q B, et al. High-speed electrically actuated elastomers with strain greater than 100% [J]. Science, 2000, 287(5454): 836–839.CrossRefGoogle Scholar
  2. [2]
    PElRINE R, SOMMER-LARSEN P, KORNBLUH R, et al. Applications of dielectric elastomer actuators [C]// Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices. Bellingham WA: Proceedings of SPIE, 2001: 335–349.CrossRefGoogle Scholar
  3. [3]
    PEI Q B, PELRINE R, STANFORD S, et al. Electroelastomer rolls and their application for biomimetic walking robots [J]. Synthetic Metals, 2003, 135: 129–131.CrossRefGoogle Scholar
  4. [4]
    HEYDT R, KORNBLUH R, PELRINE R, et al. Design and performance of an electrostrictive-polymerfilm acoustic actuator [J]. Journal of Sound and Vibration, 1998, 215: 297–311.CrossRefGoogle Scholar
  5. [5]
    ECKERLE J, STANFORD S, MARLOW J, et al. A biologically inspired hexapedal robot using field-effect electroactive elastomer artificial muscles [C]// Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, [s.l.]: Proceedings of SPIE, 2001: 269–280.CrossRefGoogle Scholar
  6. [6]
    BAR-COHEN Y. Electroactive polymer (EAP) actuators as artificial muscles: Reality, potential and challenges [M]. 2nd ed.Washington D.C, USA: SPIE Press, 2004: 481–625.CrossRefGoogle Scholar
  7. [7]
    MIN Y J, CHUC N H, KIM J W, et al. Fabrication and characterization of linear motion dielectric elastomer actuators [C]// Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices, [s.l.]: Proceedings of SPIE, 2006, 6168. DOI: 10.1117/12.658145 (published online).Google Scholar
  8. [8]
    BENSLIMANE M, GRAVESEN P, SOMMERLARSEN P. Mechanical properties of dielectric elastomer actuators with smart metallic compliant electrodes [C]// Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD). [s.l.]: Proceedings of SPIE, 2002: 150–157.CrossRefGoogle Scholar
  9. [9]
    KOFOD G, KORNBLUH R, SOMMER-LARSEN P, et al. Actuation response of polyacrylate dielectric elastomers [J]. Journal of Intelligent Material Systems and Structures, 2003, 14(12): 787–793.CrossRefGoogle Scholar
  10. [10]
    SUO Z G. Theory of dielectric elastomers [J]. Acta Mechanica Solida Sinica, 2010, 23(6): 549–578.CrossRefGoogle Scholar
  11. [11]
    ZHAO X H, KOH S J A, SUO Z G. Nonequilibrium thermodynamics of dielectric elastomers [J]. International Journal of Applied Mechanics, 2011, 3(2): 203–217.CrossRefGoogle Scholar
  12. [12]
    PELRINE R, KORNBLUH R, JOSEPH J. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation [J]. Sensors and Actuators A Physical, 1998, 64: 77–85.CrossRefGoogle Scholar
  13. [13]
    KOFOD G, SOMMER-LARSEN P. Silicone dielectric elastomer actuators: Finite elasticity model of actuation [J]. Sensors and Actuators A Physical, 2005, 122(2): 273–283.CrossRefGoogle Scholar
  14. [14]
    GOULBOURNE N, MOCKENSTURM E, FRECKER M. A nonlinear model for dielectric elastomer membranes [J]. Journal of Applied Mechanics, 2005, 72(6): 899–906.CrossRefMATHGoogle Scholar
  15. [15]
    DORFMANN A, OGDEN R W. Nonlinear electroelasticity [J]. Acta Mechanica, 2005, 173(3/4): 167–183.CrossRefMATHGoogle Scholar
  16. [16]
    WISSLER M, MAZZA E. Modeling and simulation of dielectric elastomer actuators [J]. Smart Materials and Structures, 2005, 14(6): 1396–1402.CrossRefGoogle Scholar
  17. [17]
    WISSLER M, MAZZA E. Modeling of a pre-strained circular actuator made of dielectric elastomers [J]. Sensors and Actuators A Physical, 2005, 120(1): 184–192.CrossRefGoogle Scholar
  18. [18]
    PLANTE J S, DUBOWSKY S. Large-scale failure modes of dielectric elastomer actuators [J]. International Journal of Solids and Structures, 2006, 43(25): 7727–7751.CrossRefMATHGoogle Scholar
  19. [19]
    LOCHMATTER P, KOVACS G, WISSLER M. Characterization of dielectric elastomer actuators based on a visco-hyperelastic film model [J]. Smart Materials and Structures, 2007, 16(2): 477–486.CrossRefGoogle Scholar
  20. [20]
    KOFOD G. Dielectric elastomer actuators [J]. Journal of Physics D Applied Physics, 2008, 41(2): 5405–5411.Google Scholar
  21. [21]
    ZHAO X H, SUO Z G. Method to analyze electromechanical stability of dielectric elastomer [J]. Applied Physics Letters, 2007, 91: 061921.CrossRefGoogle Scholar
  22. [22]
    KOH S J A, LI T F, ZHOU J X, et al. Mechanisms of large actuation strain in dielectric elastomer [J]. Journal of Polymer Science Part B Polymer Physics, 2011, 49(7): 504–515.CrossRefGoogle Scholar
  23. [23]
    HUANG R, SUO Z G. Electromechanical phase transition in dielectric elastomers [J]. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 2012, 468: 1014–1040.MathSciNetCrossRefGoogle Scholar
  24. [24]
    PLANTE J S, DUBOWSKY S. On the performance mechanisms of dielectric elastomers actuators [J]. Sensors and Actuators A Physical, 2007, 137(1): 96–109.CrossRefGoogle Scholar
  25. [25]
    YEOH O H. Characterization of elastic properties of carbon-black-filled rubber vulcanizates [J]. Rubber Chemistry and Technology, 1990, 63: 792–805.CrossRefGoogle Scholar
  26. [26]
    ZHAO X H, SUO Z G. Electrostriction in elastic dielectrics undergoing large deformation [J]. Journal of Applied Physics, 2008, 104: 123530.CrossRefGoogle Scholar
  27. [27]
    VU-CONG T, JEAN-MISTRAL C, SYLVESTRE A. Impact of the nature of the compliant electrodes on the dielectric constant of acrylic and silicone electroactive polymers [J]. Smart Materials and Structures, 2012, 21: 105036.CrossRefGoogle Scholar

Copyright information

© Shanghai Jiaotong University and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Danhquang Tran (陈名光)
    • 1
  • Jin Li (李 锦)
    • 1
  • Fuzhen Xuan (轩福贞)
    • 1
  1. 1.School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations