Skip to main content
Log in

Separation and visualization of arteries and heart in 3D computed tomography angiography images

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The visualization of arteries and heart usually plays a crucial role in the clinical diagnosis, but researchers face the problems of region selection and mutual occlusion in clinical visualization. Therefore, the arteries and the heart cannot be easily visualized by current visualization methods. To solve the problems, we propose a new framework for arteries and cardiac visualization by combining a priori knowledge and the set operations. Firstly, a suitable region can be easily determined in the transfer function space with a priori knowledge and the visual feedback results. Secondly, the arteries and the heart can be directly extracted by the marked seed point. Finally, the arteries and the heart are separated for solving mutual occlusion through the set operations. This framework can easily solve the mutual occlusion problem in clinical visualization and greatly improve the region selection method in the transfer function space. Its effectiveness has been demonstrated on the basis of many experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LEVOY M. Display of surfaces from volume data [J]. IEEE Computer graphics and Applications, 1988, 8(3): 29–37.

    Article  Google Scholar 

  2. DREBIN R A, CARPENTER L, HANRAHAN P. Volume rendering [J]. Computer Graphics, 1988, 22(4): 65–74.

    Article  Google Scholar 

  3. RUBIN G D, BEAULIEU C F, ARGIRO V, et al. Perspective volume rendering of CT and MR images: Applications for endoscopic imaging [J]. Radiology, 1996, 199(2): 321–330.

    Article  Google Scholar 

  4. JOHNSON P T, HEATH D G, KUSZYK B S, et al. CT angiography with volume rendering: Advantages and applications in splanchnic vascular imaging [J]. Radiology, 1996, 200(2): 564–568.

    Article  Google Scholar 

  5. KINDLMANN G, DURKIN JW. Semi-automatic generation of transfer functions for direct volume rendering [C]// Proceedings of the 1998 IEEE Symposium on Volume Visualization. [s. l.]: IEEE, 1998: 79–86.

    Chapter  Google Scholar 

  6. SATO Y, WESTIN C F, BHALERAO A, et al. Tissue classification based on 3D local intensity structures for volume rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2000, 6(2): 160–180.

    Article  Google Scholar 

  7. PFISTER H, LORENSEN B, BAJAJ C, et al. The transfer function bake-off [J]. IEEE Computer Graphics and Applications, 2001, 21(3): 16–22.

    Article  Google Scholar 

  8. KNISS J, KINDLMANN G, HANSEN C. Multidimensional transfer functions for interactive volume rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(3): 270–285.

    Article  Google Scholar 

  9. ŠEREDA P, BARTROLÍ A V, SERLIE I W O, et al. Visualization of boundaries in volumetric data sets using LH histograms [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(2): 208–218.

    Article  Google Scholar 

  10. WU Y C, QU H M. Interactive transfer function design based on editing direct volume rendered images [J]. IEEE Transactions on Visualization and Computer Graphics, 2007, 13(5): 1027–1040.

    Article  Google Scholar 

  11. WANG L, ZHAO X, KAUFMAN A E. Modified dendrogram of attribute space for multidimensional transfer function design [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(1): 121–131.

    Article  Google Scholar 

  12. CABAN J J, RHEINGANS P. Texture-based transfer functions for direct volume rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1364–1371.

    Article  Google Scholar 

  13. KINDLMANN G, WHITAKER R, TASDIZEN T, et al. Curvature-based transfer functions for direct volume rendering: Methods and applications [C]// Proceedings of Visualization 2003. Seattle, USA: IEEE, 2003: 513–520.

    Google Scholar 

  14. ANDERSON C M, SALONER D, TSURUDA J S, et al. Artifacts in maximum-intensity-projection display of MR angiograms [J]. American Journal of Roentgenology, 1990, 154(3): 623–629.

    Article  Google Scholar 

  15. SATO Y, SHIRAGA N, NAKAJIMA S, et al. Local maximum intensity projection (LMIP): A new rendering method for vascular visualization [J]. Journal of Computer Assisted Tomography, 1998, 22(6): 912–917.

    Article  Google Scholar 

  16. CORREA C D, MA K L. Size-based transfer functions: A new volume exploration technique [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1380–1387.

    Article  Google Scholar 

  17. JOSHI A, QIAN X N, DIONE D P, et al. Effective visualization of complex vascular structures using a nonparametric vessel detection method [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(6): 1603–1610.

    Article  Google Scholar 

  18. PRAßNI J S, ROPINSKI T, MENSMANN J, et al. Shape-based transfer functions for volume visualization [C]// IEEE Pacific Visualization Symposium 2010. Taipei, China: IEEE, 2010: 9–16.

    Chapter  Google Scholar 

  19. LÄTHÉN G, LINDHOLM S, LENZ R, et al. Automatic tuning of spatially varying transfer functions for blood vessel visualization [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2345–2354.

    Article  Google Scholar 

  20. SELVER M A, GÜZELIS C. Semiautomatic transfer function initialization for abdominal visualization using self-generating hierarchical radial basis function networks [J]. IEEE Transactions on Visualization and Computer Graphics, 2009, 15(3): 395–409.

    Article  Google Scholar 

  21. LUNDSTRÖM C, LJUNG P, YNNERMAN A. Local histograms for design of transfer functions in direct volume rendering [J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(6): 1570–1579.

    Article  Google Scholar 

  22. ZHANG Q, EAGLESON R, PETERS T M. Real-time visualization of 4D cardiac MR images using graphics processing units [C]// 3rd IEEE International Symposium on Biomedical Imaging. [s. l.]: IEEE, 2006: 343–346.

    Google Scholar 

  23. SERA T, YOKOTA H, FUJISAKI K, et al. Development of high-resolution 4D in vivo-CT for visualization of cardiac and respiratory deformations of small animals [J]. Physics in Medicine and Biology, 2008, 53(16): 4285–4301.

    Article  Google Scholar 

  24. LAIDLAW D H, FLEISCHER K W, BARR A H. Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms [J]. IEEE Transactions on Medical Imaging, 1998, 17(1): 74–86.

    Article  Google Scholar 

  25. LAN S R, WANG L S, SONG Y P, et al. Improving separability of structures with similar attributes in 2D transfer function design [J]. IEEE Transactions on Visualization and Computer Graphics, 2016. Doi: 10.1109/TVCG.2016.2537341 (published online).

    Google Scholar 

  26. ROETTGER S, BAUER M, STAMMINGER M. Spatialized transfer functions [C]// EUROGRAPHICSIEEE VGTC Symposium on Visualization. [s. l.]: IEEE, 2005: 271–278.

    Google Scholar 

  27. HAHN H K, PREIM B, SELLE D, et al. Visualization and interaction techniques for the exploration of vascular structures [C]// Proceedings of Visualization 2001. San Diego, USA: IEEE, 2001: 395–402.

    Chapter  Google Scholar 

  28. PREIM B, OELTZE S. 3D visualization of vasculature: An overview [C]// Visualization in Medicine and Life Sciences. Berlin Heidelberg: Springer-Verlag, 2008: 39–59.

    Chapter  Google Scholar 

  29. WANG Y H, ZHANG J, LEHMANN D J, et al. Automating transfer function design with valley cellbased clustering of 2D density plots [C]// Eurographics Conference on Visualization. Oxford, UK:Wiley, 2012: 1295–1304.

    Google Scholar 

  30. IP C Y, VARSHNEY A, JAJA J. Hierarchical exploration of volumes using multilevel segmentation of the intensity-gradient histograms [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2355–2363.

    Article  Google Scholar 

  31. NING H, YANG R Q, MA A M, et al. Interactive 3D medical data cutting using closed curve with arbitrary shape [J]. Computerized Medical Imaging and Graphics, 2015, 40: 120–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisheng Wang  (王利生).

Additional information

Foundation item: the National Basic Research Program (973) of China (No. 2013CB329401), the National Natural Science Foundation of China (No. 61375020), and the Cross Research Fund of Biomedical Engineering of Shanghai Jiao Tong University (No. YG2013ZD02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, S., Cui, C., Liu, X. et al. Separation and visualization of arteries and heart in 3D computed tomography angiography images. J. Shanghai Jiaotong Univ. (Sci.) 22, 1–9 (2017). https://doi.org/10.1007/s12204-017-1792-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-017-1792-x

Key words

CLC number

Document code

Navigation