Skip to main content
Log in

A generalized two-level Bregman method with dictionary updating for non-convex magnetic resonance imaging reconstruction

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

In recent years, it has shown that a generalized thresholding algorithm is useful for inverse problems with sparsity constraints. The generalized thresholding minimizes the non-convex p-norm based function with p < 1, and it penalizes small coefficients over a wider range meanwhile applies less bias to the larger coefficients. In this work, on the basis of two-level Bregman method with dictionary updating (TBMDU), we use the modified thresholding to minimize the non-convex function and propose the generalized TBMDU (GTBMDU) algorithm. The experimental results on magnetic resonance (MR) image simulations and real MR data, under a variety of sampling trajectories and acceleration factors, consistently demonstrate that the proposed algorithm can efficiently reconstruct the MR images and present advantages over the previous soft thresholding approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lustig M, Donoho D, Pauly J M. Sparse MRI: The application of compressed sensing for rapid MR imaging [J]. Magnetic Resonance in Medicine, 2007, 58(6): 1182–1195.

    Article  Google Scholar 

  2. Lin F H, Kwong K K, Belliveau J W, et al. Parallel imaging reconstruction using automatic regularization [J]. Magnetic Resonance in Medicine, 2004, 51(3): 559–567.

    Article  Google Scholar 

  3. Qu P, Luo J, Zhang B, et al. An improved iterative SENSE reconstruction method [J]. Magnetic Resonance Engineering, 2007, 31(1): 44–50.

    Google Scholar 

  4. Lin F H, Wang F N, Ahlfors S P, et al. Parallel MRI reconstruction using variance partitioning regularization [J]. Magnetic Resonance in Medicine, 2007, 58(4): 735–744.

    Article  Google Scholar 

  5. Liang D, Liu B, Wang J, et al. Accelerating SENSE using compressed sensing [J]. Magnetic Resonance in Medicine, 2009, 62(6): 1574–1584.

    Article  Google Scholar 

  6. Candès E J, Romberg J, Tao T. Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information [J]. IEEE Transactions on Information Theory, 2006, 52(2): 489–509.

    Article  MATH  Google Scholar 

  7. Donoho D L. Compressed sensing [J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  8. Tropp J A, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  9. Block K T, Uecker M, Frahm J. Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint [J]. Magnetic Resonance in Medicine, 2007, 57(6): 1086–1098.

    Article  Google Scholar 

  10. Ma S, Yin W, Zhang Y, et al. An efficient algorithm for compressed MR imaging using total variation and wavelets [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, Alaska, USA: IEEE, 2008: 1–8.

    Google Scholar 

  11. Trzasko J, Manduca A. Highly undersampled magnetic resonance image reconstruction via homotopic l0 minimization [J]. IEEE Transactions on Medical Imaging, 2009, 28(1): 106–121.

    Article  Google Scholar 

  12. Wong A, Mishra A, Fieguth P, et al. Sparse reconstruction of breast MRI using homotopic l0 minimization in a regional sparsified domain [J]. IEEE Transactions on Biomedical Engineering, 2013, 60(3): 743–752.

    Article  Google Scholar 

  13. Shi J P, Ren X, Dai G, et al. A non-convex relaxation approach to sparse dictionary learning [C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Providence, Rhode Island, USA: IEEE, 2011: 1809–1816.

    Google Scholar 

  14. Akcakaya M, Nam S, Hu P, et al. Compressed sensing with wavelet domain dependencies for coronary MRI: A retrospective study [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1090–1099.

    Article  Google Scholar 

  15. Ramani S, Fessler J A. Parallel MR image reconstruction using augmented Lagrangian methods [J]. IEEE Transactions on Medical Imaging, 2011, 30(3): 694–706.

    Article  Google Scholar 

  16. Aharon M, Elad M, Bruckstein A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311–4322.

    Article  Google Scholar 

  17. Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries [J]. IEEE Transactions on Image Processing, 2006, 15(12): 3736–3745.

    Article  MathSciNet  Google Scholar 

  18. Otazo R, Sodickson D K. Adaptive compressed sensing MRI [C]// Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden: ISMRM, 2010: 4867.

    Google Scholar 

  19. Bilgin A, Kim Y, Liu F, et al. Dictionary design for compressed sensing MRI [C]// Proceedings of the 18th Annual Meeting of ISMRM. Stockholm, Sweden: ISMRM, 2010: 4887.

    Google Scholar 

  20. Chen Y, Ye X, Huang F. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data [J]. Inverse Problems and Imaging, 2010, 4(2): 223–240.

    Article  MathSciNet  Google Scholar 

  21. Ravishankar S, Bresler Y. MR image reconstruction from highly undersampled k-space data by dictionary learning [J]. IEEE Transactions on Medical Imaging, 2011, 30(5): 1028–1041.

    Article  Google Scholar 

  22. Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization [J]. IEEE Signal Processing Letters, 2007, 14(10): 707–710.

    Article  Google Scholar 

  23. Chartrand R, Yin W. Iteratively reweighted algorithms for compressive sensing [C]// Proceedings of the 33rd International Conference on Acoustics, Speech, and Signal Processing. Las Vegas, Nevada, USA: IEEE, 2008: 3869–3872.

    Google Scholar 

  24. Liu Q, Wang S, Luo J. A novel predual dictionary learning algorithm [J]. Journal of Visual Communication Image Represention, 2012, 23(1): 182–193.

    Article  Google Scholar 

  25. Liu Q, Luo J, Wang S, et al. An augmented Lagrangian multi-scale dictionary learning algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2011, 58(1): 1–16.

    MATH  Google Scholar 

  26. Yin W, Osher S, Goldfarb D, et al. Bregman iterative algorithms for ℓ1-minimization with applications to compressed sensing [J]. SIAM Journal on Imaging Sciences, 2008, 1(1): 143–168.

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu Q, Wang S, Yang K, et al. Highly undersampled magnetic resonance imaging reconstruction using twolevel Bregman method with dictionary updating [J]. IEEE Transactions on Medical Imaging, 2013, 32(7): 1290–1301.

    Article  MathSciNet  Google Scholar 

  28. Daubechies I, Defrise M, Mol C D. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on Pure and Applied Mathematics, 2004, 57(11): 1413–1457.

    Article  MathSciNet  MATH  Google Scholar 

  29. Voronin S, Chartrand R. A new generalized thresholding algorithm for inverse problems with sparsity constraints [C]// Proceedings of the 38th International Conference on Acoustics, Speech, and Signal Processing. Vancouver, Canada: IEEE, 2013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qie-gen Liu  (刘且根).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 61362001, 61365013 and 51165033), the Natural Science Foundation of Jiangxi Province (Nos. 20132BAB211030 and 20122BAB211015), the Technology Foundation of Department of Education in Jiangxi Province (Nos. GJJ 13061 and GJJ 14196), the National Postdoctoral Research Funds (No. 2014M551867), and the Jiangxi Advanced Projects for Postdoctoral Research Funds (No. 2014KY02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Mh., He, Xy., Du, Sy. et al. A generalized two-level Bregman method with dictionary updating for non-convex magnetic resonance imaging reconstruction. J. Shanghai Jiaotong Univ. (Sci.) 20, 660–669 (2015). https://doi.org/10.1007/s12204-015-1674-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-015-1674-z

Key words

CLC number

Navigation