Skip to main content
Log in

H inverse optimal adaptive fault-tolerant attitude control for flexible spacecraft with input saturation

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

An adaptive inverse optimal attitude controller for flexible spacecraft with fault-free actuator is designed based on adaptive control Lyapunov function and inverse optimal methodology subjected to unknown parameter uncertainties, external disturbances and input saturation. The partial loss of actuator effectiveness and the additive faults are considered simultaneously to deal with actuator faults, and the prior knowledge of bounds on the effectiveness factors of the actuators is assumed to be unknown. A fault-tolerant control version is designed to handle the system with actuator fault by introducing a parameter update law to estimate the lower bound of the partial loss of actuator effectiveness faults. The proposed fault-tolerant attitude controller ensures robustness and stabilization, and it achieves H optimality with respect to a family of cost functionals. The usefulness of the proposed algorithms is assessed and compared with the conventional approaches through numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin J H, Ko S H, Ryoo C K. Fault tolerant control for satellites with four reaction wheels [J]. Control Engineering Practice, 2008, 16(10): 1250–1258.

    Article  Google Scholar 

  2. Hu Q L. Robust adaptive sliding-mode fault-tolerant control with L 2-gain performance for flexible spacecraft using redundant reaction wheels [J]. IET Control Theory and Applications, 2009, 4(6): 1055–1070.

    Article  Google Scholar 

  3. Meng Q, Zhang T, Song J Y. Modified model-based fault-tolerant time-varying attitude tracking control of uncertain flexible satellites [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(11): 1827–1841.

    Article  Google Scholar 

  4. Hu Q L, Xiao B, Friswell M I. Robust faulttolerant control for spacecraft attitude stabilization subject to input saturation [J]. IET Control Theory and Application, 2011, 5(2): 271–282.

    Article  MathSciNet  Google Scholar 

  5. Lee H, Kim Y. Fault-tolerant control scheme for satellite attitude control system [J]. IET Control Theory and Application, 2010, 4(8): 1436–1450.

    Article  Google Scholar 

  6. Xiao B, Hu Q L. Fault-tolerant attitude control for flexible spacecraft without angular velocity magnitude measurement [J]. Journal of Guidance, Control, and Dynamics, 2011, 34(5): 1556–1561.

    Article  MathSciNet  Google Scholar 

  7. Boškovič JD, Li SM, Mehra RK. Robust adaptive variable structure control of spacecraft under control input saturation [J]. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14–22.

    Article  Google Scholar 

  8. Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation [J]. Control Engineering Practice, 2003, 11: 989–997.

    Article  Google Scholar 

  9. Cai W C, Liao X H, Song Y D. Indirect robust adaptive fault-tolerant control for attitude tracking of spacecraft [J]. Journal of Guidance, Control, and Dynamics, 2008, 31(5): 1456–1463.

    Article  Google Scholar 

  10. Zou A M, Kumar K D. Adaptive fuzzy fault-tolerant attitude control of spacecraft [J]. Control Engineering Practice, 2011, 19: 10–21.

    Article  Google Scholar 

  11. Hu Q L, Xiao B. Fault-tolerant sliding mode attitude control for flexible spacecraft under loss of actuator effectiveness [J]. Nonlinear Dynamics, 2011, 64: 13–23.

    Article  MathSciNet  MATH  Google Scholar 

  12. Horri N M, Palmer P, Roberts M. Design and validation of inverse optimization software for the attitude control of microsatellites [J]. Acta Astronautica, 2011, 69: 997–1006.

    Article  Google Scholar 

  13. Xin M, Pan H. Indirect robust control of spacecraft via optimal control solution [J] IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 1798–1809.

    Article  Google Scholar 

  14. Nayeri M R D, Alasty A, Daneshjou K. Neural optimal control of flexible spacecraft slew maneuver [J]. Acta Astronautica, 2004, 55: 817–827.

    Article  Google Scholar 

  15. Zheng J H, Banks H G, Alleyne H. Optimal attitude control for three-axis stabilized flexible spacecraft [J]. Acta Astronautica, 2005, 56: 519–528.

    Article  Google Scholar 

  16. Park Y. Robust and optimal attitude stabilization of spacecraft with external disturbances [J]. Aerospace Science and Technology, 2005, 9: 253–259.

    Article  MATH  Google Scholar 

  17. Kang W. Nonlinear H control and its application to rigid spacecraft [J]. IEEE Transactions on Automatic Control, 1995, 40(7): 1281–1285.

    Article  MATH  Google Scholar 

  18. Zheng Q, Wu F. Nonlinear H control designs with axisymmetric spacecraft control [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 850–859.

    Article  Google Scholar 

  19. Liu C S, Jiang B. H fault-tolerant control for timevaried actuator fault of nonlinear system [J]. International Journal of Systems Science, 2014, 45(12): 2447–2457.

    Article  MathSciNet  Google Scholar 

  20. Li Z, Hu Y, Liu Y, et al. Adaptive inverse control of non-linear systems with unknown complex hysteretic non-linearities [J]. IET Control Theory and Applications, 2012, 6(1): 1–7.

    Article  MathSciNet  MATH  Google Scholar 

  21. Krstic M, Li Z H. Inverse optimal design of Input-to-State stabilizing nonlinear controllers [J]. IEEE Transactions on Automatic Control, 1998, 43(3): 336–350.

    Article  MathSciNet  MATH  Google Scholar 

  22. Cai X S, Han Z Z. Inverse optimal control of nonlinear systems with structural uncertainty [J]. IET control Theory and Applications, 2005, 152(1): 79–83.

    Article  Google Scholar 

  23. Bharadwaj S, Qsipchuk M, Mease K D, et al. Geometry and inverse optimality in global attitude stabilization [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6): 930–939.

    Article  Google Scholar 

  24. Krstic M, Tsiotras P. Inverse optimal stabilization of a rigid spacecraft [J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1042–1049.

    Article  MathSciNet  MATH  Google Scholar 

  25. Luo W C, Chu Y C, Ling K V. H inverse optimal attitude-tracking control of rigid spacecraft [J]. Journal of Guidance, Control, and Dynamics, 2005, 28(3): 481–493.

    Article  Google Scholar 

  26. Luo W C, Chu Y C, Ling K V. Inverse optimal adaptive control for attitude tracking of spacecraft [J]. IEEE Transactions on Automatic Control, 2005, 50(11): 1639–1654.

    Article  MathSciNet  Google Scholar 

  27. Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design [M]. New York: Wiley, 1995.

    Google Scholar 

  28. Ahmed J, Coppola V T, Bernstein D S. Adaptive asymptotic tracking of spacecraft attitude notion with inertia matrix identification [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(5), 684–691.

    Article  Google Scholar 

  29. Chen Z Y, Huang J. Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control [J]. IEEE Transaction on Automatic Control, 2009, 54(3): 600–605.

    Article  Google Scholar 

  30. Gao W Z, Selmic R R. Neural network control of a class of nonlinear systems with actuator saturation [J]. IEEE Transactions on Neural Networks, 2006, 17(1): 147–156.

    Article  MATH  Google Scholar 

  31. Hu Q L, Xiao B. Intelligent proportional-derivative control for flexible spacecraft attitude stabilization with unknown input saturation [J]. Aerospace Science and Technology, 2012, 23: 63–74.

    Article  Google Scholar 

  32. Funahashi K I. On the approximate realization of continuous mappings by neural networks [J]. Neural Networks, 1989, 2(3): 183–192.

    Article  Google Scholar 

  33. Khalil H K. Nonlinear systems [M]. Upper Saddle River, NJ: Prentice-Hall, 1996.

    Google Scholar 

  34. Yao B, Tomizuka M. Smooth robust adaptive sliding mode control of robot manipulators with guaranteed transient performance [J]. Journal of Dynamics systems, Measurement and Control, 1996, 118(4): 764–775.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-kang Zhao  (赵健康).

Additional information

Foundation item: the National High Technology Research and Development Program (863) of China (No. 2012AA121602) and the Preliminary Research Program of the General Armament Department of China (No. 51322050202)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Hh., Zhao, Jk. & Lai, Jq. H inverse optimal adaptive fault-tolerant attitude control for flexible spacecraft with input saturation. J. Shanghai Jiaotong Univ. (Sci.) 20, 513–527 (2015). https://doi.org/10.1007/s12204-015-1659-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-015-1659-y

Keywords

CLC number

Document code

Navigation