Skip to main content
Log in

A novel model of failure rate prediction for circular electrical connectors

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The reliability of electrical connectors has critical impact on electronic systems. It is usually characterized by failure rate prediction value according to standard MIL-HDBK-217 (or GJB-299C in Chinese) in engineering practice. Given to their limitations and mislead results, a new failure rate prediction models needs to be presented. The presented model aims at the mechanism of increase of film thickness which leads to the increase of contact resistance. The estimated failure rate value can be given at different environmental conditions, and some of the factors affecting the reliability are taken into account. Accelerated degradation test (ADT) was conducted on GJB599III series electrical connector. The failure rate prediction model can be simply formed and convenient to calculate the expression of failure rate changing with time at various temperature and vibration conditions. This model gives an objective assessment in short time, which makes it convenient to be applied to the engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MIL-HDBK-217F, Reliability prediction of electronic equipment [S].

  2. BS IEC 61586:1997, Estimation of the reliability of electrical connectors [S].

  3. Mcleish J. Enhancing MIL-HDBK-217 reliability predictions with physics of failure methods [J]. Advancing Microelectronics, 2010, 37: 28–32.

    Google Scholar 

  4. Chen Wen-hua, Li Hong-shi, Lian Wen-zhi, et al. Accelerated life test and statistical analysis of aerospace electrical connectors under multiple environmental stresses [J]. Zhejiang University Journal (Engineering Science), 2006 40(2): 348–351 (in Chinese).

    Google Scholar 

  5. Wu J. Electrical characterization and reliability assessment of lead-free solder coated electrical contacts [D]. Maryland: University of Maryland, 2003.

    Google Scholar 

  6. Ganesan S, Wu J, Pecht M, et al. Assessment of long-term reliability in lead-free assemblies [C]//2005 International Conference on Asian Green Electronics. [s.l.]: IEEE, 2005, 140–155.

    Google Scholar 

  7. Wu J, Pecht M G. Contact resistance and fretting corrosion of lead-free alloy coated electrical contacts [J]. IEEE Transactions on Component and Packing Technologies, 2006 29(2): 402–410.

    Article  Google Scholar 

  8. Swingler J. Enhancing connector reliability by using conducting polymer materials to minimize contact fretting [J]. Material and Design, 2009, 30: 3935–3942.

    Article  Google Scholar 

  9. Arrowsmith P, Kapadia P, Hawley A, et al. Investigation of a connector electrical failure [J]. Surface and Interface Analysis, 2011, 43: 600–603.

    Article  Google Scholar 

  10. Poddubnyi I, Khomiakov S, Kolganov V, et al. Electrical connectors for blanket modules in ITER [J]. Fusion Engineering and Design, 2014, 89: 1336–1340.

    Article  Google Scholar 

  11. Shibutani T, Wu J, Yu Q, et al. Key reliability concerns with lead-free connectors [J]. Microelectronic Reliability, 2008, 48: 1613–1627.

    Article  Google Scholar 

  12. Gao J C, Chen C, Flowers G T, et al. The influence of particulate contaminants on vibrationinduced fretting degradation in electrical connectors [C]//Proceedings of the 56th IEEE Holm Conference on Electrical Contacts. [s.l.]: IEEE, 2010: 342–350.

    Google Scholar 

  13. Bury K V. Statistical models in applied science [M]. New York: John Willy & Sons, 1975.

    Google Scholar 

  14. Bury K V. Distribution of smallest log-normal and gamma extremes [J]. Statistics Hefts, 1975 16(2): 105–114.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Sun  (孙 博).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Ye, Ty. & Fang, Y. A novel model of failure rate prediction for circular electrical connectors. J. Shanghai Jiaotong Univ. (Sci.) 20, 472–476 (2015). https://doi.org/10.1007/s12204-015-1652-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-015-1652-5

Keywords

CLC number

Navigation