Skip to main content
Log in

5′-Cap selection methods and their application in full-length cDNA library construction and transcription start site profiling

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

With the accomplishment of the genome draft sequences, identification of functional elements in genome has become an urgent task. Full-length cDNAs provide an important resource for gene identification and their precise structural feature determination. It also provides a basis for genomic element definition. As many regulatory elements are around transcription start sites (TSSs), precise localization of TSSs in the genome becomes a critical step for identifying the associated core promoters. Massive parallel snapshot of TSSs at a particular time under a specific experimental condition makes it possible to globally analyze important regulatory elements around TSSs and further construct transcriptional regulatory networks. In this paper, we first reviewed two important full-length cDNA cloning techniques: cap-trapper technique and oligo-capping technique. Then, we introduced deepCAGE, a cap-trapper and deep sequencing-based TSS profiling technique, and its applications in the research of transcriptional regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carninci P, Westover A, Nishiyama Y, et al. High-efficiency full-length cDNA cloning by biotinylated CAP trapper [J]. DNA Research, 1997, 4(1): 61–66.

    Article  Google Scholar 

  2. Carninci P, Kvam C, Kitamura A, et al. Highefficiency full-length cDNA cloning by biotinylated CAP trapper [J]. Genomics, 1996, 37(3): 327–336.

    Article  Google Scholar 

  3. Carninci P, Shibata Y, Hayatsu N, et al. Normalization and subtraction of cap-trapper-selected cDNAs to prepare full-length cDNA libraries for rapid discovery of new genes [J]. Genome Research, 2000, 10(10): 1617–1630.

    Article  Google Scholar 

  4. Carninci P, Waki K, Shiraki T, et al. Targeting a complex transcriptome: The construction of the mouse full-length cDNA encyclopedia [J]. Genome Research, 2003, 13(6): 1273–1289.

    Article  Google Scholar 

  5. Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60 770 full-length cDNAs [J]. Nature, 2002, 420(6915): 563–573.

    Article  Google Scholar 

  6. Djebali S, Davis C A, Merkel A, et al. Landscape of transcription in human cells [J]. Nature, 2012, 489(7414): 101–108.

    Article  Google Scholar 

  7. Carninci P, Sandelin A, Lenhard B, et al. Genome-wide analysis of mammalian promoter architecture and evolution [J]. Nature Genetics, 2006, 38(6): 626–635.

    Article  Google Scholar 

  8. Katayama S, Tomaru Y, Kasukawa T, et al. Antisense transcription in the mammalian transcriptome [J]. Science, 2005, 309: 1564–1566.

    Article  Google Scholar 

  9. Feies-Toth K, Sotrirova V, Sachidanandam R, et al. Post-transcriptional processing generates a diversity of 5′-modified long and short RNAs [J]. Nature, 2009, 457(7232): 1028–1032.

    Article  Google Scholar 

  10. Chien C H, Sun Y M, Chang W C, et al. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data [J]. Nucleic Acids Research, 2011, 39(21): 9345–9356.

    Article  Google Scholar 

  11. Kondo T, Plaza S, Zanet J, et al. Small peptides switch the transcriptional activity of shavenbaby during drosophila embryogenesis [J]. Science, 2010, 329(5989): 336–339.

    Article  Google Scholar 

  12. Frith M C, Forrest A R, Nourbakhsh E, et al. The abundance of short proteins in the mammalian proteome [J]. PLoS Genet, 2006, 2(4): e52.1–13.

    Google Scholar 

  13. Suzuki Y, Sugano S. Construction of a full-length enriched and a 5′-end enriched cDNA library using the oligo-capping method [J]. Methods in Molecular Biology, 2003, 221: 73–91.

    Google Scholar 

  14. Ota T, Suzuki Y, Nishikawa T, et al. Complete sequencing and characterization of 21 243 full-length human cDNAs [J]. Nature Genet, 2004, 36(1): 40–45.

    Article  Google Scholar 

  15. Kurosawa J, Nishiyori H, Hayashizaki Y, et al. Deep cap analysis of gene expression [J]. Methods in Molecular Biology, 2011, 687: 147–163.

    Article  Google Scholar 

  16. Takahashi H, Lassmann T, Murata M, et al. 5′ end-centered expression profiling using cap-analysis gene expression (CAGE) and next-generation sequencing [J]. Nature Protocols, 2012, 7(3): 542–561.

    Article  Google Scholar 

  17. Suzuki H, Forrest A R R, Van Nimwegen E, et al. The transcriptional network that controls growth arrest and differentiation in a human myeloid leukemia cell line [J]. Nature Genetics, 2009, 41(5): 553–562.

    Article  Google Scholar 

  18. Hoskins R A, Landolin J M, Brown J B, et al. Genome-wide analysis of promoter architecture in drosophila melanogaster [J]. Genome Research, 2011, 21(2): 182–192.

    Article  Google Scholar 

  19. Nepal C, Hadzhiev Y, Previti C, et al. Dynamic regulation of the transcription initiation landscape at single nucleotide resolution during vertebrate embryogenesis [J]. Genome Research, 2013, 23(11): 1938–1950.

    Article  Google Scholar 

  20. De Hoon M, Hayashizaki Y. Deep cap analysis gene expression (CAGE): Genome-wide identification of promoters, quantification of their expression, and network inference [J]. Biotechniques, 2008, 44(5): 627–632.

    Article  Google Scholar 

  21. Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome [J]. Science, 2005, 309(5740): 1559–1563.

    Article  Google Scholar 

  22. Mercer T R, Wilhelm D, Dinger M E, et al. Expression of distinct RNAs from 30 untranslated regions [J]. Nucleic Acids Research, 2011, 39(6): 2393–2403.

    Article  Google Scholar 

  23. Mercer T R, Dinger M E, Bracken C P, et al. Regulated post-transcriptional RNA cleavage diversifies the eukaryotic transcriptome [J]. Genome Research, 2010, 20(12): 1639–1650.

    Article  Google Scholar 

  24. Suzuki Y, Taira H, Tsunoda T, et al. Diverse transcriptional initiation revealed by fine large-scale mapping of mRNA start sites [J]. EMBO Report, 2001, 2(5): 388–393.

    Article  Google Scholar 

  25. Seki M, Narusaka M, Kamiya A, et al. Functional annotation of a full-length Arabidopsis cDNA collection [J]. Science, 2002, 296(5565): 141–145.

    Article  Google Scholar 

  26. Frith M C, Forrest A R, Nourbakhsh E, et al. The abundance of short proteins in the mammalian proteome [J]. PLoS Genet, 2006, 2(4): e52.1–5

    Google Scholar 

  27. Frith M C, Wilming L G, Forrest A, et al. Pseudo-messenger RNA: Phantoms of the transcriptome [J]. PLoS Genet, 2006, 2(4): e23.1-5

    Google Scholar 

  28. Furuno M, Pang K C, Ninomiya N, et al. Clusters of internally primed transcripts reveal novel long noncoding RNAs [J]. PLoS Genet. 2006, 2(4): e37.1-8

    Article  Google Scholar 

  29. Valen E, Pascarella G, Chalk A, et al. Genomewide detection and analysis of hippocampus core promoters using DeepCAGE [J]. Genome Research, 2009, 19(2): 255–265.

    Article  Google Scholar 

  30. Carninci P, Waki K, Shiraki T, et al. Targeting a complex transcriptome: The construction of the mouse full-length cDNA encyclopedia [J]. Genome Research, 2003, 13(6): 1273–1289.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling Bai  (白 玲) or Hua Li  (李 华).

Additional information

Foundation item: the National Natural Science Foundation of China (Nos. 1137420, 91129000, 21273148, 91229108, 31370750 and 21303104) and the National Basic Research Program (973) of China (No. 2010CB529205)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Wang, Q., Li, Hm. et al. 5′-Cap selection methods and their application in full-length cDNA library construction and transcription start site profiling. J. Shanghai Jiaotong Univ. (Sci.) 19, 580–586 (2014). https://doi.org/10.1007/s12204-014-1545-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-014-1545-z

Key words

CLC number

Navigation