Skip to main content
Log in

Orthogonal discriminant improved local tangent space alignment based feature fusion for face recognition

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Improved local tangent space alignment (ILTSA) is a recent nonlinear dimensionality reduction method which can efficiently recover the geometrical structure of sparse or non-uniformly distributed data manifold. In this paper, based on combination of modified maximum margin criterion and ILTSA, a novel feature extraction method named orthogonal discriminant improved local tangent space alignment (ODILTSA) is proposed. ODILTSA can preserve local geometry structure and maximize the margin between different classes simultaneously. Based on ODILTSA, a novel face recognition method which combines augmented complex wavelet features and original image features is developed. Experimental results on Yale, AR and PIE face databases demonstrate the effectiveness of ODILTSA and the feature fusion method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turk M A, Pentland A P. Face recognition using eigenfaces [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Maui, Hawaii, USA: IEEE, 1991: 586–591.

    Google Scholar 

  2. Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. fisherfaces: Recognition using classspecific linear projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711–720.

    Article  Google Scholar 

  3. He X, Cai D, Yan S, et al. Neighborhood preserving embedding [C]//Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005: 1208–1213.

    Google Scholar 

  4. He X F, Yan S C, Hu Y X, et al. Face recognition using Laplacian faces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328–340.

    Article  Google Scholar 

  5. Zhang T, Yang J, Zhao D, et al. Linear local tangent space alignment and application to face recognition [J]. Neurocomputing, 2007, 70: 1547–1553.

    Article  Google Scholar 

  6. Hu H F. Orthogonal neighborhood preserving discriminant analysis for face recognition [J]. Pattern Recognition, 2008, 41(6): 2045–2054.

    Article  MATH  Google Scholar 

  7. Li B, Huang D S, Wang C, et al. Feature extraction using constrained maximum variance mapping [J]. Pattern Recognition, 2008, 41(11): 3287–3294.

    Article  MathSciNet  MATH  Google Scholar 

  8. Li B, Zheng C, Huang D. Locally linear discriminant embedding: An efficient method for face recognition [J]. Pattern Recognition, 2008, 41(12): 3813–3821.

    Article  MATH  Google Scholar 

  9. Li H F, Jiang T, Zhang K S. Efficient and robust feature extraction by maximum margin criterion [J]. IEEE Transactions on Neural Networks, 2006, 17(1): 157–165.

    Article  Google Scholar 

  10. Saul L K, Roweis S T. Think globally, fit locally: Unsupervised learning of low dimensional manifolds [J]. Journal of Machine Learning Research, 2003, 4(2): 119–155.

    MathSciNet  Google Scholar 

  11. Lei Y K, Xu Y M, Yang J A, et al. Feature extraction using orthogonal discriminant local tangent space alignment [J]. Pattern Analysis & Applications, 2012, 15(3): 249–259.

    Article  MathSciNet  Google Scholar 

  12. Zhang P, Qiao H, Zhang B. An improved local tangent space alignment method for manifold learning [J]. Pattern Recognition Letters, 2011, 32(2): 181–189.

    Article  Google Scholar 

  13. Chaudhury K N, Unser M. Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms [J]. IEEE Transactions on Signal Processing, 2009, 57(9): 3411–3425.

    Article  MathSciNet  Google Scholar 

  14. Kingsbury N. The dual-tree complex wavelet transform: A new efficient tool for image restoration and enhancement [C]//Proceedings of the 17th European Signal Processing Conference. Rhodos, Greece: Elsevier, 1998: 319–322.

    Google Scholar 

  15. Yan S, Xu D, Zhang B, et al. Graph embedding and extensions: A general framework for dimensionality reduction [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40–51.

    Article  MathSciNet  Google Scholar 

  16. Cai D, He X, Han J. SRDA: An efficient algorithm for large-scale discriminant analysis [J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(1): 1–12.

    Article  Google Scholar 

  17. Martinez A, Benavente R. The AR database [R]. Barcelona, Spain: CVC, 1998.

    Google Scholar 

  18. Sim T, Baker S, Bsat M. The CMU pose, illumination, and expression database [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(12): 1615–1618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zhang  (张 强).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 61004088), and the Key Basic Research Foundation of Shanghai Municipal Science and Technology Commission (No. 09JC1408000)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Cai, Yz. & Xu, Xm. Orthogonal discriminant improved local tangent space alignment based feature fusion for face recognition. J. Shanghai Jiaotong Univ. (Sci.) 18, 425–433 (2013). https://doi.org/10.1007/s12204-013-1417-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-013-1417-y

Key words

CLC number

Navigation