Skip to main content
Log in

An improved method of detecting chaotic motion for rotor-bearing systems

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Based on reconstructing the phase space and calculating the largest Lyapunov exponent, an improved method of detecting chaotic motion is presented for rotor-bearing systems. The method is an improvement to the Wolf method and the Rosenstein algorithm. The improved method introduces the correlation integral function method to estimate the embedding dimension and the reconstruction delay simultaneously, and it makes tracks for the evolutions of every pair of the nearest neighbors to improve the utilization of the reconstructed phase space. Numerical calculation and experimental verification show that the improved method can estimate the proper reconstruction parameters and detect chaotic motion of rotor-bearing systems accurately. In addition, the analytical results show that the current approach is robust to variations of the embedding dimension and the reconstruction delay, and it is applicable to small data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adiletta G, Guido A R, Rossi C. Chaotic motion of a rigid rotor in short journal bearing [J]. Nonlinear Dynamics, 1996, 10(3): 251–269.

    Article  Google Scholar 

  2. Chang-Jian C W, Chen C K. Bifurcation and chaos analysis of a flexible rotor supported by turbulent long journal bearings [J]. Chaos, Solitons and Fractals, 2007, 34(4): 1160–1179.

    Article  Google Scholar 

  3. Eckmann J P, Ruelle D. Ergodic theory of chaos and strange attractors [J]. Reviews of Modern Physics, 1985, 57(3): 617–656.

    Article  MathSciNet  Google Scholar 

  4. Grassberger P, Procaccia I. Characterization of strange attractors [J]. Physical Review Letters, 1983, 50(5): 346–349.

    Article  MathSciNet  Google Scholar 

  5. Benettin G, Galgani L, Strelcyn J M. Kolmogorov entropy and numerical experiment [J]. Physical Review A, 1976, 14(1): 2338–2345.

    Article  Google Scholar 

  6. Kim B J, Choe G H. High precision numerical estimation of the largest Lyapunov exponent [J]. Communications in Nonlinear Science and Numerical Simulation, 2010, 15(5): 1378–1384.

    Article  MathSciNet  MATH  Google Scholar 

  7. Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series [J]. Physica D, 1985, 16(3): 285–317.

    Article  MathSciNet  MATH  Google Scholar 

  8. Stefanski A, Dabrowski A, Kapitaniak T. Evaluation of the largest Lyapunov exponent in dynamical systems with time delay [J]. Chaos, Solitons and Fractals, 2005, 23(5): 1651–1659.

    MathSciNet  MATH  Google Scholar 

  9. Shimada I, Nagashima T. A numerical approach to ergodic problem of dissipative dynamical systems [J]. Progress of Theoretical Physics, 1979, 61(6): 1605–1616.

    Article  MathSciNet  MATH  Google Scholar 

  10. Benettin G, Galgani L, Giorgilli A, et al. Lyapunov characteristic exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them. Part I. Theory [J]. Meccanica, 1980, 15(1): 9–20.

    Article  MATH  Google Scholar 

  11. Benettin G, Galgani L, Giorgilli A, et al. Lyapunov exponents for smooth dynamical systems and Hamiltonian systems; a method for computing all of them. Part II. Numerical application [J]. Meccanica, 1980, 15(1): 21–30.

    Article  Google Scholar 

  12. Takens F. Detecting strange attractors in turbulence [J]. Lecture Notes in Mathematics, 1981, 898(1): 366–381.

    Article  MathSciNet  Google Scholar 

  13. Sano M, Sawada Y. Measurement of the Lyapunov spectrum from a chaotic time series [J]. Physical Review Letters, 1985, 55(10): 1082–1085.

    Article  MathSciNet  Google Scholar 

  14. Eckmann J P, Kamphorst S O, Ruelle D, et al. Lyapunov exponents from a time series [J]. Physical Review Letters, 1986, 34(9): 4971–4979.

    MathSciNet  Google Scholar 

  15. Rosenstein M T, Collins J J, De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets [J]. Physica D, 1993, 65(1-2): 117–134.

    Article  MathSciNet  MATH  Google Scholar 

  16. Grond F, Diebner H H, Sahle S, et al. A robust, locally interpretable algorithm for Lyapunov exponents [J]. Chaos, Solitions and Fractals, 2003, 16(5): 841–852.

    Article  MathSciNet  Google Scholar 

  17. Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times, and embedding windows [J]. Physica D, 1999, 127(1-2): 48–60.

    Article  MATH  Google Scholar 

  18. Brock W A, Hsieh D A, Lebaron B. Nonlinear dynamics, chaos, and instability: Statistical theory and economic evidence [M]. Cambridge: MIT Press, 1993: 42–54.

    Google Scholar 

  19. Sato S, Sano M, Sawada Y. Practical methods of measuring the generalized dimension and the largest Lyapunov exponent in high dimensional chaotic systems [J]. Progress of Theoretical Physics, 1987, 77(1): 1–5.

    Article  MathSciNet  Google Scholar 

  20. Capone G. Orbital motions of rigid symmetric rotor supported on journal bearings [J]. La Meccanica Italiana, 1986, 199: 37–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-lin Shi  (师名林).

Additional information

Foundation item: the National Basic Research Program (973) of China (No. 2009CB724302)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, Ml., Wang, Dz. & Zhang, Jg. An improved method of detecting chaotic motion for rotor-bearing systems. J. Shanghai Jiaotong Univ. (Sci.) 18, 229–236 (2013). https://doi.org/10.1007/s12204-013-1387-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-013-1387-0

Key words

CLC number

Navigation