Skip to main content
Log in

Review on composite structural health monitoring based on fiber Bragg grating sensing principle

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Fiber Bragg grating (FBG) based sensors offer important advantages over traditional instrumentation with regards to real-time structural health monitoring (SHM) of composite materials and structures in recent years. FBG sensors, integrated into existing structures or embedded into new ones, have played a major role in assessing the safety and integrity of engineering structures. In this paper, a review on the latest research of the FBG-based SHM technique for composite field is presented. Firstly, the FBG sensing principle is briefly discussed and FBG and several other optical fiber sensors (OFSs) for SHM are performance-compared. Then, several examples of the use of FBG sensors in composite SHM are illustrated, including those from the field of cure monitoring, civil engineering, aviation, aerospace, marine and offshore platform. Finally, some existing problems are pointed out and some proposals for further researches are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meltz G, Morey WW, Glenn W H. Formation of Bragg gratings in optical fibers by a transverse holographic method [J]. Optics Letters, 1989, 14(15): 823–825.

    Article  Google Scholar 

  2. Kersey A D, Davis M A, Patrick H J, et al. Fiber grating sensors [J]. IEEE Journal of Lightwave Technology, 1997, 15(8): 1442–1463.

    Article  Google Scholar 

  3. Kashyap R. Fiber Bragg gratings [M]. New York: Academic Press, 1999.

    Google Scholar 

  4. Rastogi P K, Inaudi D. Trends in optical nondestructive testing and inspection [M]. Amsterdam: Elsevier Science, 2000.

    Google Scholar 

  5. Meltz G, Morey W W, Glenn W H, et al. In-fiber Bragg-grating sensors [C]//Proceedings of Optical Fiber Sensors, OSA Technical Digest Series (Optical Society of America, 1988). New Orleams, LA: OSA, 1988: ThBB5.1-5.

    Google Scholar 

  6. Lee B. Review of the present status of optical fiber sensors [J]. Optical Fiber Technique, 2003, 9(2): 57–79.

    Article  Google Scholar 

  7. Hill K O, Fujii Y, Johnson D C, et al. Photosensitivity in optical fiber waveguides: Application to reflection fiber fabrication [J]. Applied Physics Letters, 1978, 32(10): 647–649.

    Article  Google Scholar 

  8. Kersey A D, Morey W W. Multiplexed Bragg grating fiber-laser strain-sensor system with mode-locked interrogation [J]. Electronics Letters, 1993, 29(1): 112–114.

    Article  Google Scholar 

  9. Hill K O, Malo B, Bilodeau F, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask [J]. Applied Physics Letters, 1993, 62(10): 1035–1037.

    Article  Google Scholar 

  10. Morey W W, Meltz G, Glenn W H. Fiber optic Bragg grating sensors [J]. Proc SPIE, 1989, 4469: 98–107.

    Google Scholar 

  11. Melle S, Liu K X, Measures R M. Strain sensing using a fiber-optic Bragg grating [J]. Proc SPIE, 1991, 1588: 255–263.

    Article  Google Scholar 

  12. Huang S, LeBlanc M, Ohn M M, et al. Bragg intragrating structural sensing [J]. Applied Optics, 1995, 34(22): 5003–5009.

    Article  Google Scholar 

  13. Friebele E J, Askins C G, Bosse A B, et al. Optical fiber sensors for spacecraft applications [J]. Smart Materials and Structures, 1999, 8(6): 813–838.

    Article  Google Scholar 

  14. Silva-Muñoz R A, Lopez-Anido R A. Structural health monitoring of marine composite structural joints using embedded fiber Bragg grating strain sensors [J]. Composite Structures, 2009, 89: 224–234.

    Article  Google Scholar 

  15. Fisher N E, Surowiec J, Webb D J, et al. In-fiber Bragg gratings for ultrasonic medical applications [J]. Measurement Science and Technology, 1997, 8: 1050–1054.

    Article  Google Scholar 

  16. Davis M A, Kersey A D. All-fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler [J]. Electronics Letters, 1994, 30(1): 75–77.

    Article  Google Scholar 

  17. Udd E, Spillman Jr W B. Optical fiber sensors: An introduction for engineers and scientists [M]. New York: John Wiley & Sons, Inc., 1995.

    Google Scholar 

  18. Kersey A D. A review of recent developments in fiber optic sensor technology [J]. Optical Fiber Technology, 1996, 2(3): 291–317.

    Article  Google Scholar 

  19. Grattan K T V. Optical fibre sensors and measurement systems [C]//Proceedings of the XVI IMEKO World Congress. Vienna: IMEKO, 2000: 195–200.

    Google Scholar 

  20. Leung C K Y. Optical fiber sensors in concrete: The future? [J]. NDT & E International, 2001, 34(2): 85–94.

    Article  Google Scholar 

  21. Giallorenzi T G, Dandridge A. Optical fiber sensors [C]// Proceedings of Optical Fiber Communicatio, OSA Technical Digest Series (Optical Society of America, 1987). Reno, Nerada: OSA, 1987: TU11.1-5.

    Google Scholar 

  22. Schulz W L, Udd E, Seim J M, et al. Advanced fiber grating strain sensor systems for bridges, structures, and highways [J]. Proc SPIE, 1998, 3325: 212–221.

    Article  Google Scholar 

  23. Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering [J]. Engineering Structures, 2004, 26(11): 1647–1657.

    Article  MathSciNet  Google Scholar 

  24. Morey W W, Meltz G, Glenn W H. Fiber optic Bragg grating sensors [C]//SPIE Conference on Fiber Optic and Laser Sensors. Boston: SPIE, 1989: 98–107.

    Google Scholar 

  25. Rao Y J, Lobo Ribeiro A B, Jackson D A, et al. Combined spatial- and time-division-multiplexing scheme for fiber grating sensors with drift-compensated phase-sensitive detection [J]. Optics Letters, 1995, 20(20): 2149–2151.

    Article  Google Scholar 

  26. Kalamkarov A L, Fitzgerald S B, MacDonald D O, et al. On the processing and evaluation of pultruded smart composites [J]. Composites Part B: Engineering, 1999, 30(7): 753–763.

    Article  Google Scholar 

  27. Ansari F. State-of-the-art in the applications of fiberoptic sensors to cementitious composites [J]. Cement and Concrete Composites, 1997, 19(1): 3–19.

    Article  Google Scholar 

  28. Tennyson R C, Mufti A A, Rizkalla S, et al. Structural health monitoring of innovative bridges in Canada with optical fiber sensors [J]. Smart Materials and Structures, 2001, 10(3): 560–573.

    Article  Google Scholar 

  29. Lin Y B, Lai J S, Chang K C, et al. Flood scour monitoring system using fiber Bragg grating sensors [J]. Smart Materials and Structures, 2006, 15(6): 1950–1959.

    Article  Google Scholar 

  30. Measures R M, Alavie A T, Maaskant R, et al. Bragg grating structural sensing system for bridge monitoring [J]. Proc SPIE, 1994, 2294: 53–60.

    Article  Google Scholar 

  31. Schulz W L, Conte J P, Udd E, et al. Static and dynamic testing of bridges and highways using long-gage fiber Bragg grating based strain sensors [J]. Proc SPIE, 2000, 4202: 79–86.

    Article  Google Scholar 

  32. Maaskant R, Alavie A T, Measures R M, et al. Fiber-optic Bragg grating sensors for bridgemonitoring [J]. Cement and Concrete Composites, 1997, 19(1): 21–33.

    Article  Google Scholar 

  33. Gebremichael Y M, Li W, Boyle W J O, et al. Integration and assessment of fibre Bragg grating sensors in an all-fiber reinforced polymer composite road bridge [J]. Sensors and Actuators A: Physical, 2005, 118(1): 78–85.

    Google Scholar 

  34. Kister G, Winter D, Badcock R A, et al. Structural health monitoring of a composite bridge using Bragg grating sensors. Part 1. Evaluation of adhesives and protection systems for the optical sensors [J]. Engineering Structures, 2007, 29(3): 440–448.

    Article  Google Scholar 

  35. Wang Q B, Chen J A, Fu G Y, et al. A methodology for optimisation design and analysis of stratosphere airship [J]. Aeronautical Journal, 2009, 113(1146): 533–540.

    Google Scholar 

  36. Melle S, Liu K X, Measures R M. Strain sensing using a fiber-optic Bragg grating [J]. Proc SPIE, 1991, 1588: 255–263.

    Article  Google Scholar 

  37. Sekine H, Fujimoto S E, Okabe T, et al. Structural health monitoring of cracked aircraft panels repaired with bonded patches using fiber Bragg grating sensors [J]. Applied Composite Materials, 2006, 13(2): 87–98.

    Article  Google Scholar 

  38. Yahata A, Kikukawa H. Innovative lightweight structures-interim report on the R&D program [C]//Proceedings of the 44th JSASS/JSME Structures Conference. Tokyo: Japan Science and Technology Agency, 2002: 10–12.

    Google Scholar 

  39. Yahata A, Kikukawa H, Kadoya M. Innovative structural development for a civil transport [C]//Proceedings of 38th Aircraft Symposium. Tokyo: Japan Science and Technology Agency, 2000: 385–388.

    Google Scholar 

  40. Lee J R, Ryu C Y, Koo B Y, et al. In-flight health monitoring of a subscale wing using a fiber Bragg grating sensor system [J]. Smart Materials and Structures, 2003, 12(1): 147–155.

    Article  Google Scholar 

  41. Takeda S, Aoki Y, Ishikawa T, et al. Structural health monitoring of composite wing structure during durability test [J]. Composite Structures, 2007, 79(1): 133–139.

    Article  Google Scholar 

  42. Read I J, Foote P D. Sea and flight trials of optical fiber Bragg grating strain sensing systems [J]. Smart Materials and Structures, 2001, 10(5): 1085–1094.

    Article  Google Scholar 

  43. Okabe Y, Yashiro S, Kosaka T, et al. Detection of transverse cracks in CFRP composites using embedded fiber Bragg grating sensors [J]. Smart Materials and Structures, 2000, 9(6): 832–838.

    Article  Google Scholar 

  44. Chandler K, Ferguson S, Graver T, et al. On-line structural health and fire monitoring of a composite personal aircraft using an FBG sensing system [J]. Proc SPIE, 2008, 6933: 69330H.1–6.

    Article  Google Scholar 

  45. Kageyama K, Kimpara I, Suzuki T, et al. Smart marine structures: An approach to the monitoring of ship structures with fiber-optic sensors [J]. Smart Materials and Structures, 1998, 7(4): 472–478.

    Article  Google Scholar 

  46. Austin M. Sensor application opportunities for aerospace propulsion systems [C]//Proceedings of Avionics, Fiber-Optics and Phototonics Technology Conference. San Antonio, TX: IEEE, 2009: 21–22.

    Google Scholar 

  47. McKenzie I, Karafolas N. Optical fiber sensing in space structures: The experience of the European Space Agency [J]. Proc SPIE, 2005, 5855: 262–269.

    Article  Google Scholar 

  48. Ecke W, Latka I, Willsch R, et al. Fiber optic sensor network for spacecraft health monitoring [J]. Measurement Science and Technology, 2001, 12(7): 974–980.

    Google Scholar 

  49. Jones J D C. Review of fibre sensor techniques for temperature-strain discrimination [C]//Proceedings of the 12th International Conference on Optical Fiber Sensors. Williamsburg: OSA, 1997: 36–39.

    Google Scholar 

  50. Liu T, Fernando G F, Zhang L, et al. Simultaneous strain and temperature measurement using a combined fibre Bragg grating/extrinsic Fabry-Perot sensor [C]//Proceedings of the 12th International Conference on Optical Fiber Sensors. Williamsburg: OSA, 1997: 40–43.

    Google Scholar 

  51. Li K, Chen M, Lin Y. Research on marine structure inspection support system on mobile device platform [J]. Journal of Shanghai Jiaotong University: Science, 2012, 17(1): 70–75.

    Article  Google Scholar 

  52. Johnson G A, Pran K, Sagvolden G, et al. Surface effect ship vibro-impact monitoring with distributed arrays of fiber Bragg gratings [J]. Proc SPIE, 2000, 4062: 1406–1411.

    Google Scholar 

  53. Wang Q B, Chen J A, Fu G Y, et al. An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization [J]. Journal of Zhejiang University: Science A, 2009, 10(11): 1609–1616.

    Article  MATH  Google Scholar 

  54. Takahashi N, Yoshimura K, Takahashi S, et al. Characteristics of fiber Bragg grating hydrophone [J]. IEICE Transactions on Electronics, 2000, E83-C(3): 275–281.

    Google Scholar 

  55. Jensen A E, Havsgard G B, Pran K, et al. Wet deck slamming experiments with a FRP sandwich panel using a network of 16 fiber optic Bragg grating strain sensors [J]. Composites Part B: Engineering, 2000, 31(3): 187–198.

    Article  Google Scholar 

  56. Li H C H, Herszberg I, Mouritz A P, et al. Sensitivity of embedded fiber optic Bragg grating sensors to disbonds in bonded composite ship joints [J]. Composite Structures, 2004, 66(1–4): 239–248.

    Article  Google Scholar 

  57. Kersey A D, Davis M A, Berkoff T A, et al. Transient load monitoring on a composite hull ship using distributed optical fiber Bragg grating sensors [J]. Proc SPIE, 1997, 3042: 421–430.

    Article  Google Scholar 

  58. Hjelme D R, Bjerkan L, Neegard S, et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle modes [J]. Applied Optics, 1997, 36(1): 328–336.

    Article  Google Scholar 

  59. Herszberg I, Li H C H, Dharmawan F, et al. Damage assessment and monitoring of composite ship joints [J]. Composite Structures, 2005, 67(2): 205–216.

    Article  Google Scholar 

  60. Sun L, Li H N, Jin Q. FBG sensors for the measurement of the dynamic response of offshore oil platform model [J]. Proc SPIE, 2005, 5768: 354–362.

    Article  Google Scholar 

  61. Mangal L, Idichandy V G, Ganapathy C. Structural monitoring of offshore platforms using impulse and relaxation response [J]. Ocean Engineering, 2001, 28(6): 689–705.

    Article  Google Scholar 

  62. Hill K O, Gerald M. Fiber Bragg grating technology: Fundamentals and overview [J]. Journal of Lightwave Technology, 1997, 15(8): 1263–1276.

    Article  Google Scholar 

  63. Miller C, Li T, Miller J, et al. Mutiplexed fiber gratings enhance mechanical sensing [J]. Laser Focus World, 1998, 34(3): 119–123.

    Google Scholar 

  64. Ohno H, Naruse H, Kihara M, et al. Industrial applications of the BOTDR optical fiber strain sensor [J]. Optical Fiber Technology, 2001, 7(1): 45–64.

    Article  Google Scholar 

  65. Johnson D B, Salama M M, Long J R, et al. Composite production riser: Manufacturing development and qualification testing [C]//Proceedings of Offshore Technology Conference. Houston, Texas: OTC, 1998: 1–11.

    Google Scholar 

  66. Sparks C P, Odru P, Bono H, et al. Mechanical testing of high-performance composite tubes for TLP production risers [C]// Proceedings of Offshore Technology Conference. Houston, Texas: OTC, 1988: 467–472.

    Google Scholar 

  67. Xiao H, Deng J D, Wang Z Y, et al. Fiber optic pressure sensor with self-compensation capability for harsh environment applications [J]. Optical Engineering, 2005, 44(5): 054403.1–9.

    Article  Google Scholar 

  68. Rebel G, Chaplin C R, Groves-Kirkby C, et al. Condition monitoring techniques for fibre mooring ropes [J]. Insight: Non-Destructive Testing and Condition Monitoring, 2000, 42(6): 384–390.

    Google Scholar 

  69. Weis R S, Beadle B M. MWD telemetry system for coiled-tubing drilling using optical fiber grating modulators downhole [C]// Proceedings of 12th International Conference on Optical Fiber Sensor. Williamsburg: OSA, 1997: 416–419.

    Google Scholar 

  70. Stephen-Weis R, Bachim B L, Beadle B M, et al. Optical fiber telemetry systems for measurement-while-drilling applications [J]. Optical Engineering, 2000, 39(6): 1591–1596.

    Article  Google Scholar 

  71. High G B. Fiber optic based sensor network for condition monitoring of subsea production machinery [C]//Proceedings of Offshore Technology Conference. Houston, Texas: OTC, 1998: 681–689.

    Google Scholar 

  72. Thomas P. Composites manufacturing techniques: Applications in automotive, petroleum, and civil infrastructure industries [R]. Gaithersburg, MD: National Institute of Standards and Technology, 2004.

    Google Scholar 

  73. Zhang L, Shu X, Bennion I. Advances in UV-inscribed fiber grating optic sensor technologies [C]//Proceedings of IEEE Sensors. Orlando, USA: IEEE, 2002: 31–35.

    Chapter  Google Scholar 

  74. Breidne M. Fibre Bragg gratings: A versatile photonics component [J]. Proc SPIE, 2000, 4016: 104–111.

    Article  Google Scholar 

  75. Grattan K T V, Sun T. Fiber optic sensor technology: An overview [J]. Sensors and Actuators, 2000, 82(1-3): 40–61.

    Article  Google Scholar 

  76. Ye C C, Staines S E, James S W, et al. A polarization-maintaining fibre Bragg grating interrogation system for multi-axis strain sensing [J]. Measurement Science and Technology, 2002, 13(9): 1446–1449.

    Article  Google Scholar 

  77. Mendez A. Fiber Bragg grating sensors: A market overview [J]. Proc SPIE, 2007, 6619: 1–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-tao Zhao  (赵海涛).

Additional information

Foundation item: the National High Technology Research and Development Program (863) of China (No. 2011AA7052011), and the National Natural Science Foundation of China (No. 51205253)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, Y., Wang, Qb., Zhao, Ht. et al. Review on composite structural health monitoring based on fiber Bragg grating sensing principle. J. Shanghai Jiaotong Univ. (Sci.) 18, 129–139 (2013). https://doi.org/10.1007/s12204-013-1375-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-013-1375-4

Key words

CLC number

Navigation