Skip to main content
Log in

Adaptive robust control for an active heave compensation system

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

Active heave compensation systems are usually employed in offshore and deep-sea operations to reduce the adverse impact of unexpected vessel’s vertical motion on the response of underwater instruments. This paper presents a control strategy for an active heave compensation system consisting of an electro-hydraulic system driven by a double rod actuator, which is subjected to parametric uncertainties and unmeasured environmental disturbances. Adaptive observer and discontinuous projection type updating law with bounded adaption rate are presented firstly to estimate the uncertain system parameters. Then a similar estimation algorithm is designed by using a multiple delayed version of the system to enhance the performance of parameter observation. A reduced order observer is also introduced to estimate unknown wave disturbances. Using the obtained uncertainty information, the resulting control development and stability analysis are implemented based on the Lyapunov’s direct method and back-stepping technique. The proposed controller guarantees the heave compensation error convergent to a bounded neighborhood around the origin. Simulations illustrate the effectiveness of the proposed control system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Korde U A. Active heave compensation on drill-ships in irregular waves [J]. Ocean Engineering, 1998, 25(7): 541–561.

    Article  Google Scholar 

  2. Johansen T A, Fossen T I, Sagatun S I, et al. Wave synchronizing crane control during water entry in offshore moonpool operations -- experimental results [J]. IEEE Journal of Oceanic Engineering, 2003, 28(4): 720–728.

    Article  Google Scholar 

  3. Skaare B, Egeland O. Parallel force/position crane control in marine operations [J]. IEEE Journal of Oceanic Engineering, 2006, 31(3): 599–613.

    Article  Google Scholar 

  4. Messineo S, Celani F, Egeland O. Crane feedback control in offshore moonpool operations [J]. Control Engineering Practice, 2008, 16(3): 356–364.

    Article  Google Scholar 

  5. Marconi L, Isidori A, Serrani A. Autonomous vertical landing on an oscillating platform: An internalmodel based approach [J]. Automatica, 2002, 38(1): 21–32.

    Article  MathSciNet  MATH  Google Scholar 

  6. Serrani A, Isidori A, Marconi L. Semiglobal nonlinear output regulation with adaptive internal model [J]. IEEE Transactions on Automatic Control, 2001, 46(8): 1178–1194.

    Article  MathSciNet  MATH  Google Scholar 

  7. Messineo S, Serrani A. Offshore crane control based on adaptive external models [J]. Automatica, 2009, 45(11): 2546–2556.

    Article  MathSciNet  MATH  Google Scholar 

  8. Serrani A. Rejection of harmonic disturbances at the controller input via hybrid adaptive external models [J]. Automatica, 2006, 42(11): 1977–1985.

    Article  MathSciNet  MATH  Google Scholar 

  9. Küchler S, Mahl T, Neupert J, et al. Active control for an offshore crane using prediction of the vessel’s motion [J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(2): 297–309.

    Article  Google Scholar 

  10. Do K D, Pan J. Nonlinear control of an active heave compensation system [J]. Ocean Engineering, 2008, 35(5–6): 558–571.

    Article  Google Scholar 

  11. Alleyne A, Hedirch J K. Nonlinear adaptive control of active suspensions [J]. IEEE Transactions on Control Systems Technology, 1995, 3(1): 94–101.

    Article  Google Scholar 

  12. Yao B, Bu F, Chiu G T C. Non-linear adaptive robust control of electro-hydraulic systems driven by double-rod actuators [J]. International Journal of Control, 2001, 74(8): 761–775.

    Article  MATH  Google Scholar 

  13. Guan C, Pan S. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters [J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 434–445.

    Article  Google Scholar 

  14. Pi Y, Wang X. Trajectory tracking control of a 6-DOF hydraulic parallel robot manipulator with uncertain load disturbances [J]. Control Engineering Practice, 2011, 19: 185–193.

    Article  Google Scholar 

  15. Mohanty A, Yao B. Indirect adaptive robust control of hydraulic manipulators with accurate parameter estimates [J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 567–575.

    Article  Google Scholar 

  16. Merritt H E. Hydraulic control systems [M]. New York: Wiley, 1967.

    Google Scholar 

  17. Bastin G, Gevers M R. Stable adaptive observers for nonlinear time-varying systems [J]. IEEE Transactions on Automatic Control, 1988, 33(7): 650–658.

    Article  MathSciNet  MATH  Google Scholar 

  18. Khalil H K. Nonlinear systems [M]. New Jersey: Prentice-Hall, 2002.

    Google Scholar 

  19. Xu A, Zhang Q. Nonlinear system fault diagnosis based on adaptive estimation [J]. Automatica, 2004, 40(7): 1181–1193.

    Article  MathSciNet  MATH  Google Scholar 

  20. Stamnes Ø N, Aamo O M, Kaasa G-O. Redesign of adaptive observers for improved parameter identification in nonlinear systems [J]. Automatica, 2011, 47(2): 403–410.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-wang Li  (李家旺).

Additional information

Foundation item: the National High Technology Research and Development Program (863) of China (No. 2007AA09Z215), the International Seabed Area Research and Exploration (the Eleventh Five-Year) Program of COMRA (No. DYXM-115-03-09-05), the National Natural Science Foundation of China (No. 51009091) and the Research Fund for the Doctoral Program of Higher Education of China (No. 20100073120016)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Jw., Wang, Xy. & Ge, T. Adaptive robust control for an active heave compensation system. J. Shanghai Jiaotong Univ. (Sci.) 18, 17–24 (2013). https://doi.org/10.1007/s12204-013-1363-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-013-1363-8

Key words

CLC number

Navigation