Skip to main content
Log in

Evolutionary algorithms for solving unconstrained multilevel lot-sizing problem with series structure

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

This paper presents a comparative study of evolutionary algorithms which are considered to be effective in solving the multilevel lot-sizing problem in material requirement planning (MRP) systems. Three evolutionary algorithms (simulated annealing (SA), particle swarm optimization (PSO) and genetic algorithm (GA)) are provided. For evaluating the performances of algorithms, the distribution of total cost (objective function) and the average computational time are compared. As a result, both GA and PSO have better cost performances with lower average total costs and smaller standard deviations. When the scale of the multilevel lot-sizing problem becomes larger, PSO is of a shorter computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afentakis P, Gavish B, Karmarkar U. Computationally efficient optimal solutions to the lot-sizing problem in multistage assembly systems [J]. Management Science, 1984, 30(2): 223–239.

    Article  Google Scholar 

  2. Barany I, Van Roy T J, Wolsey L A. Uncapacitated lot sizing: The convex hull of solutions [J]. Mathematical Programming Studies, 1984, 22: 32–43.

    MATH  Google Scholar 

  3. Ball M O, Magnanti T L, Monma C L, et al. Handbooks in operations research and management science: Network routing [M]. Amsterdam: Elsevier, 1995.

    Google Scholar 

  4. Crowston W B, Wagner M H. Dynamic lot size models for multi-stage assembly systems [J]. Management Science, 1973, 20(1): 14–21.

    Article  MATH  Google Scholar 

  5. Constantino M. Lower bounds in lot-sizing models: A polyhedral study [J]. Mathematics of Operations Research, 1998, 23(1): 101–118.

    Article  MathSciNet  MATH  Google Scholar 

  6. Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a colony of cooperating agents [J]. IEEE Trans on System, Man, and Cybernetics, 1996, 26(1): 28–41.

    Google Scholar 

  7. Dellaert N, Jeunet J. Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm [J]. International Journal of Production Research, 2000, 38(5): 1083–1099.

    Article  MATH  Google Scholar 

  8. Eberhart R, Kennedy J. A new optimizer using particle swarm theory [C]//Proceedings of 6th International Symposium on Micro Machine and Human Science. Nagoya, Japan: IEEE, 1995: 39–43.

    Chapter  Google Scholar 

  9. Eppen G D, Martin R K. Solving multi-item capacitated lot-sizing problems using variable redefinition [J]. Operations Research, 1987, 35(6): 832–848.

    Article  MATH  Google Scholar 

  10. Goldberg D E. Genetic algorithms in search, optimization and machine learning [M]. Boston: Addison-Wesley, 1989.

    Google Scholar 

  11. Glover F, Kelly J P, Laguna M. Genetic algorithm and Tabu search: Hybrid for optimizations [J]. Computers & Operations Research, 1995, 22(1): 111–134.

    Article  MATH  Google Scholar 

  12. Holland J H. Adoption in natural and artificial systems [M]. Michigan: The University of Michigan Press, 1975.

    Google Scholar 

  13. Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4598): 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  14. Karmarkar U S, Schrage L. The deterministic dynamic product cycling problem [J]. Operations Research, 1985, 33(2): 326–345.

    Article  MATH  Google Scholar 

  15. Kennedy J, Eberhart R. Particle swarm optimization [C]// Proceedings of IEEE International Conference on Neural Networks. Perth, WA, Australia: IEEE, 1995: 1942–1948.

    Chapter  Google Scholar 

  16. Kennedy J, Spears W M. Matching algorithms to problems: An experimental tests of the particle swarm and some genetic algorithms on the multimodal problem generator [C]//Proceedings of IEEE International Conference on Evolutionary Computation. Anchorage, USA: IEEE, 1998: 78–83.

    Google Scholar 

  17. Kaku I, Xiao Y, Xia G. The deterministic annealing algorithms for vehicle routing problems [J]. International Journal of Smart Engineering System Design, 2003, 5(4): 327–339.

    Article  Google Scholar 

  18. Lin F, Kao C, Hsu C. Applying the genetic approach to simulated annealing in solving some NP-hard problems [J]. IEEE Transactions on Systems, Man and Cybernetics, 1993, 23(6): 1752–1766.

    Article  Google Scholar 

  19. Millonas M M. Swarms, phase transition, and collective intelligence [M]. Boston: Addison-Wesley, 1994.

    Google Scholar 

  20. Mitchell M. An introduction to genetic algorithms [M]. Cambridge: MIT Press, 1996.

    Google Scholar 

  21. Pochet Y, Wolsey L A. Lot size model with backlogging: Strong formulations and cut planes [J]. Mathematical Programming, 1988, 40(1–3): 317–335.

    Article  MathSciNet  MATH  Google Scholar 

  22. Rutenbar R A. Simulated annealing algorithms: An overview [J]. IEEE Circuits and Devices Magazine, 1989, 5(1): 19–26.

    Article  Google Scholar 

  23. Su J, Hu A, He Z. Solving a kind of nonlinear programming problems via analog neural networks [J]. Neurocomputing, 1998, 18(1–3): 1–9.

    Article  Google Scholar 

  24. Shi Y, Eberhart R C. A modified particle swarm optimizer [C]// Proceedings of IEEE International Confeence on Evolutionary Computation. Anchorage, USA: IEEE, 1998: 69–73.

    Google Scholar 

  25. Suganthan P N. Particle swarm optimizer with neighborhood operator [C]//Proceedings of the Congress on Evolutionary Computation. Washington, USA: IEEE, 1999: 1958–1962.

    Google Scholar 

  26. Shi Y, Eberhart R C. Parameter selection in particle swarm optimization [C]//Proceedings of the 7th Annual Conference on Evolutionary Programming. Berlin, Germany: Springer-Verlag, 1998: 591–600.

    Chapter  Google Scholar 

  27. Tang O. Simulated annealing in lot sizing problems [J]. International Journal of Production Economics, 2004, 88(2): 173–181.

    Article  Google Scholar 

  28. Veral E A, Laforge R L. The performance of a simple incremental lot-sizing rule in a multilevel inventory environment [J]. Decision Sciences, 1985, 16(1): 57–72.

    Article  Google Scholar 

  29. Wolsey L A. Uncapacitated lot-sizing problems with start-up costs [J]. Operations Research, 1989, 37(5): 741–747.

    Article  MathSciNet  MATH  Google Scholar 

  30. Wolsey L A. Solving multi-item lot-sizing problems with a MIP solver using classification and reformulation [J]. Management Science, 2002, 48(12): 1587–1602.

    Article  Google Scholar 

  31. Wagner H M, Whitin T M. Dynamic version of the economic lot size model [J]. Management Science, 1958, 5(1): 89–96.

    Article  MathSciNet  MATH  Google Scholar 

  32. Yelle L E. Materials requirements lot sizing: A multilevel approach [J]. International Journal of Production Research, 1979, 17(3): 223–232.

    Article  Google Scholar 

  33. Zangwill WI. Minimum concave cost flows in certain networks [J]. Management Science, 1968, 14(7): 429–450.

    Article  MathSciNet  MATH  Google Scholar 

  34. Zangwill W I. A backlogging model and a multiechelon model of a dynamic economic lot size production system-A network approach [J]. Management Science, 1969, 15(9): 506–527.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-hu Cai  (蔡建湖).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 70971017), the Humanities and Social Sciences Project of Ministry of Education (No. 10YJC630009), the Social Science Fund of Zhejiang Province (No. 10CGGL21YBQ), and the Natural Science Foundation of Zhejiang Province (No. Y1100854)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Cai, Jh., Ikou, K. et al. Evolutionary algorithms for solving unconstrained multilevel lot-sizing problem with series structure. J. Shanghai Jiaotong Univ. (Sci.) 17, 39–44 (2012). https://doi.org/10.1007/s12204-012-1227-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-012-1227-7

Key words

CLC number

Navigation