Skip to main content
Log in

First-principle investigation of the structural stability and electronic property of precipitates on the Cu-rich side of Cu-Ni-Si alloys

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The energetic and electronic structures of precipitates on the Cu-rich side of Cu-Ni-Si alloys were investigated by using the first-principle calculations based on plane-wave pseudopotential method. The negative formation heats and the cohesive energies of these precipitates were estimated with electronic structure calculations, and their structural stability was also analyzed. The results show that δ-Ni2Si, γ-Ni5Si2 and β-Ni3Si precipitates all have great alloying ability and structural stability, which, after comparing their density of states (DOS), is found attributed to the pseudogap effect near the Fermi level (E F) and strong hybridization between the Ni-3d and Si-3p states. Compared with the other two precipitates, the δ-Ni2Si precipitate has the greatest structural stability, which is resulted from its lower DOS at E F and the main bonding peaks slightly moving to the low energy region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robertson W D, Grenier E G, Nole V F. The structure and associated properties of an age hardening copper alloy [J]. Transactions of the Metallurgical Society of AIME, 1961, 221: 503–512.

    Google Scholar 

  2. Lockyer S A, Noble F W. Precipitate structure in a Cu-Ni-Si alloy [J]. Journal of Materials Science, 1994, 29(1): 218–226.

    Article  Google Scholar 

  3. Fujiwara H, Sato T, Kamio A. Effect of alloy composition on precipitation behavior in Cu-Ni-Si alloys [J]. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 1998, 62(4): 30–35.

    Google Scholar 

  4. Huang F, Ma J, Ning H, et al. Precipitation in Cu-Ni-Si-Zn alloy for lead frame [J]. Materials Letters, 2003, 57(13–14): 2135–2139.

    Article  Google Scholar 

  5. Zhao D M, Dong Q M, Liu P, et al. Structure and strength of the age hardened Cu-Ni-Si alloy [J]. Materials Chemistry and Physics, 2003, 79(1): 81–86.

    Article  Google Scholar 

  6. Suzuki S, Shibutani N, Mimura K, et al. Improvement in strength and electrical conductivity of Cu-Ni-Si alloys by aging and cold rolling [J]. Journal of Alloys and Compounds, 2006, 417(1–2): 116–120.

    Article  Google Scholar 

  7. Oelson W, von Samson-Himmelstjerna H O. The enthalpy of formation of nickel-silicon alloys and liquid [J]. Mitt Kaiser-Wilhelm Inst Eisenforch Düsseldorf, 1936, 18: 131–133.

    Google Scholar 

  8. Meschel S V, Kleppa O J. Standard enthalpies of formation of some 3d transition metal silicides by-high temperature direct synthesis calorimetry [J]. Journal of Alloys Compounds, 1998, 267(1): 128–135.

    Article  Google Scholar 

  9. Lindhòlm M, Sundman B. A thermodynamic evaluation of the nickel-silicon system [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996, 27: 2897–2903.

    Article  Google Scholar 

  10. Acker J, Bohmhammel K. Optimization of thermodynamic data of the Ni-Si system [J]. Thermochimica Acta, 1999, 337(1–2): 187–193.

    Article  Google Scholar 

  11. Miettinen J. Thermodynamic description of the Cu-Ni-Si system in the copper-rich corner above 700° [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2005, 29(3): 212–221.

    MathSciNet  Google Scholar 

  12. Tokunaga T, Nishio K, Ohtani H, et al. Thermodynamic assessment of the Ni-Si system by incorporating ab initio energetic calculations into the CALPHAD approach [J]. Computer Coupling of Phase Diagrams and Thermochemistry, 2003, 27(2): 161–168.

    Google Scholar 

  13. Derlet P M, Andersen S J, Marioara C D, et al. A first-principles study of the β″-phase in Al-Mg-Si alloys [J]. Journal of Physics: Condensed Matter, 2002, 14(15): 4011–4024.

    Article  Google Scholar 

  14. Frøseth A G, Hoier R, Derlet P M, et al. Bonding in MgSi and Al-Mg-Si compounds relevant to Al-Mg-Si alloys [J]. Condens. Matter Physical Review B: Condensed Matter, 2003, 67: 1–11.

    Google Scholar 

  15. Ravi C, Wolverton C. First-principles study of crystal structure and stability of Al-Mg-Si-(Cu) precipitates [J]. Acta Materialia, 2004, 52(12): 4213–4227.

    Article  Google Scholar 

  16. Toman K. The structure of Ni2Si [J]. Acta Crystallographica Section B: Structural Science, 1952, 5: 329–331.

    Google Scholar 

  17. Frank K, Schubert K. Crystal structure of. Ni31Si12 [J]. Acta Crystallographica Section B: Structural Science, 1971, B27(5): 916–920.

    Google Scholar 

  18. Ochiai S, Mishima Y, Suzuki T. Lattice parameter data of Ni, Ni3Al and Ni3Ga solid solutions with additions of transition and B-subgroup elements [J]. Acta Metallurgica, 1985, 33(6): 1161–1169.

    Article  MATH  Google Scholar 

  19. Segall M D, Lindan P L D, Probert M J, et al. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. Journal of Physics: Condensed Matter, 2002, 14(11): 2717–2743.

    Article  Google Scholar 

  20. Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review Letters, 1965, 140(4A): 1133–1138.

    MathSciNet  Google Scholar 

  21. Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Reviews of Modern Physics, 1992, 64(4): 1045–1094.

    Article  Google Scholar 

  22. Perdew J P. Accurate density functional for the energy real-space cut off of the gradient expansion for the exchange hole [J]. Physical Review Letters, 1985, 55(16): 1665–1668.

    Article  Google Scholar 

  23. Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Physical Review Letter, 1996, 77(18): 3865–3868.

    Article  Google Scholar 

  24. Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Physical Review Letter, 1980, 45(7): 566–569.

    Article  Google Scholar 

  25. Pack J D, Monkhorst H J. Special points for Brillouin-zone integrations—A reply [J]. Physical Review B: Condensed Matter, 1977, 16(4–15): 1748–1749.

    Article  Google Scholar 

  26. Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigen value formalism [J]. Physical Review B: Condensed Matter, 1990, 43(11): 7892–7895.

    Article  Google Scholar 

  27. Pfrommer B G, Cote M, Louie S G, et al. Relaxation of crystals with the quasi-Newton method [J]. Journal of Computational Physics, 1997, 131(1): 233–240.

    Article  Google Scholar 

  28. Faraoun H I, Zhang Y D, Esling C, et al. Crystalline, electronic, and magnetic structures of θ-Fe3C, χ-Fe5C2, and η-Fe2C from first principle calculation [J]. Journal of Applied Physics, 2006, 99(9): 1–8.

    Article  Google Scholar 

  29. Zubov V I, Tretiakov N P, Teixeira J N, et al. Calculations of the thermal expansion, cohesive energy and thermodynamic stability of a Van der Waals crystal-fullerene C60 [J]. Physics Letters A, 1994, 194(3): 223–227.

    Article  Google Scholar 

  30. Song Y, Guo Z X, Yang R, et al. A first principles study of the theoretical strength and bulk modulus of hcp metals [J]. Acta Materialia, 2001, 49(8): 1647–1654.

    Article  Google Scholar 

  31. Iotova D, Kioussis N, Lim S P. Electronic structure and elastic properties of the Ni3X (X=Mn, Al, Ga, Si, Ge) intermetallic [J]. Physical Review B: Condensed Matter, 1996, 54(20): 14413–14421.

    Article  Google Scholar 

  32. Xu J X, Min B I, Freeman A J, et al. Phase stability and magnetism of Ni3Al [J]. Physical Review B: Condensed Matter, 1990, 41(8): 5010–5016.

    Article  Google Scholar 

  33. Carlsson A E, Meschter P J. Ab initio calculations in intermetallic compounds-principles and practice [M]. Chichester: John Wiley & Sons, 1995: 55–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-qiang Long  (龙永强).

Additional information

Foundation item: the National Natural Science Foundation of China (No. 50571035), and the National High Technology Research and Development Project (863) of China (No. 2006AA032528)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, Yq., Liu, P., Liu, Y. et al. First-principle investigation of the structural stability and electronic property of precipitates on the Cu-rich side of Cu-Ni-Si alloys. J. Shanghai Jiaotong Univ. (Sci.) 16, 266–271 (2011). https://doi.org/10.1007/s12204-011-1141-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-011-1141-4

Key words

CLC number

Navigation