Skip to main content
Log in

Research on damage in trabecular bone of the healthy human acetabulum at small strains using nonlinear micro-finite element analysis

  • Published:
Journal of Shanghai Jiaotong University (Science) Aims and scope Submit manuscript

Abstract

The mechanical properties of the pelvic trabecular bone have been studied at the continuum level. However, nothing is known about the tissue-level damage in the trabecular bone of the healthy human acetabulum at apparent small strains characteristic of habitual. By a DAWING 4000 A supercomputer, nonlinear micro-finite element (μFE) analysis was performed to quantify tissue-level damage accumulation in trabecular bone at small strains. The data indicate that damage in trabecular bone commence at 0.2% apparent strain. The findings imply that tissue yielding can initiate at very low strains in the trabecular bone of the healthy acetabulum and that this local failure has negative consequences on the apparent mechanical properties of trabecular bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Muir P, Johnson K A, Ruaux-Mason C P. In vivo matrix microdamage in a naturally occurring canine fatigue fracture [J]. Bone, 1999, 25(5): 571–576.

    Article  Google Scholar 

  2. Mashiba T, Turner C H, Hirano T, et al. Effects of suppressed bone turnover by bisphosphonates on microdamage accumulation and biomechanical properties in clinically relevant skeletal sites in beagles [J]. Bone, 2001, 28(5): 524–531.

    Article  Google Scholar 

  3. Arthur Moore T L, Gibson L J. Microdamage accumulation in bovine trabecular bone in uniaxial compression [J]. J Biomech Eng, 2002, 124(1):63–71.

    Article  Google Scholar 

  4. Martin R B. Is all cortical bone remodeling initiated by microdamage? [J]. Bone, 2002, 30(1): 8–13.

    Article  Google Scholar 

  5. Li J, Mashiba T, Burr D B. Bisphosphonate treatment suppresses not only stochastic remodeling but also the targeted repair of microdamage [J]. Calcif Tissue Int, 2001, 69(5): 281–286.

    Article  Google Scholar 

  6. Cooper C. The epidemiology of fragility fractures: is there a role for bone quality? [J]. Calcif Tissue Int, 1993, 53(S1): 23–26.

    Article  Google Scholar 

  7. Burr D B, Milgrom C, Fyhrie D, et al. In vivo measurement of human tibial strains during vigorous activity [J]. Bone, 1996, 18(5): 405–410.

    Article  Google Scholar 

  8. Van Rietbergen B, Huiskes R, Eckstein F, et al. Trabecular bone tissue strains in the healthy and osteoporotic human femur [J]. J Bone Miner Res, 2003, 18(10): 1781–1788.

    Article  Google Scholar 

  9. Pedersen D R, Crowninshield R D, Brand R A, et al. An axisymmetric model of acetabular components in total hip arthroplasty [J]. J Biomech, 1982, 15(4): 305–315.

    Article  Google Scholar 

  10. Dalstra M, Huiskes R, Odgaard A, et al. Mechanical and textural properties of pelvic trabecular bone [J]. J Biomech, 1993, 26(4–5): 523–535.

    Article  Google Scholar 

  11. Keaveny T M, Wachtel E F, Kopperdahl D L. Mechanical behavior of human trabecular bone after overloading [J]. J Orthop Res, 1999, 17(3): 346–353.

    Article  Google Scholar 

  12. Keaveny T M, Pinilla T P, Crawford R P, et al. Systematic and random errors in compression testing of trabecular bone [J]. J Orthop Res, 1997, 15(1): 101–110.

    Article  Google Scholar 

  13. Bayraktar H H, Morgan E F, Niebur G L, et al. Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue [J]. J Biomech, 2004, 37(1): 27–35.

    Article  Google Scholar 

  14. Morgan E F, Yeh O C, Keaveny T M. Damage in trabecular bone at small strains [J]. Eur J Morphol, 2005, 42(1–2): 13–21.

    Article  Google Scholar 

  15. Keaveny T M, Wachtel E F, Guo X E, et al. Mechanical behavior of damaged trabecular bone [J]. J Biomech, 1994, 27(11): 1309–1318.

    Article  Google Scholar 

  16. Niebur G L, Feldstein M J, Yuen J C, et al. High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone [J]. J Biomech, 2000, 33(12): 1575–1583.

    Article  Google Scholar 

  17. Wang X, Masse D B, Leng H, et al. Detection of trabecular bone microdamage by micro-computed tomography [J]. J Biomech, 2007, 40(15): 3397–3403.

    Article  Google Scholar 

  18. Kim D G, Christopherson G T, Dong X N, et al. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone [J]. Bone, 2004, 35(6): 1375–1382.

    Article  Google Scholar 

  19. Yeni Y N, Christopherson G T, Dong X N, et al. Effect of microcomputed tomography voxel size on the finite element model accuracy for human cancellous bone [J]. J Biomech Eng, 2005, 127(1): 1–8.

    Article  Google Scholar 

  20. Muller R, Gerber S C, Hayes WC. Micro-compression: A novel technique for the nondestructive assessment of local bone failure [J]. Technol Health Care, 1998, 6(5–6): 433–444.

    Google Scholar 

  21. Wachtel E F, Keaveny T M. Dependence of trabecular damage on mechanical strain [J]. J Orthop Res, 1997, 15(5): 781–787.

    Article  Google Scholar 

  22. Yeh O C, Keaveny T M. Relative roles of microdamage and microfracture in the mechanical behavior of trabecular bone [J]. J Orthop Res, 2001, 19(6): 1001–1007.

    Article  Google Scholar 

  23. Morgan E F, Yeh O C, Chang W C, et al. Nonlinear behavior of trabecular bone at small strains [J]. J Biomech Eng, 2001, 123(1): 1–9.

    Article  Google Scholar 

  24. Wenzel T E, Schaffler M B, Fyhrie D P. In vivo trabecular microcracks in human vertebral bone [J]. Bone, 1996, 19(2): 89–95.

    Article  Google Scholar 

  25. Nagaraja S, Lin A S, Guldberg R E. Age-related changes in trabecular bone microdamage initiation [J]. Bone, 2007, 40(4): 973–980.

    Article  Google Scholar 

  26. Morgan E F, Keaveny T M. Dependence of yield strain of human trabecular bone on anatomic site [J]. J Biomech, 2001, 34(5): 569–577.

    Article  Google Scholar 

  27. Kopperdahl D L, Keaveny T M. Yield strain behavior of trabecular bone [J]. J Biomech, 1998, 31(7): 601–608.

    Article  Google Scholar 

  28. Burr D B. Remodeling and the repair of fatigue damage [J]. Calcif Tissue Int, 1993, 53(S1): 75–80.

    Article  Google Scholar 

  29. Heaney R P. Is there a role for bone quality in fragility fractures? [J]. Calcif Tissue Int, 1993, 53(S1): 3–5.

    Article  Google Scholar 

  30. Tami A E, Nasser P, Schaffler M B, et al. Noninvasive fatigue fracture model of the rat ulna [J]. J Orthop Res, 2003, 21(6): 1018–1024.

    Article  Google Scholar 

  31. Burr D B, Milgrom C, Boyd R D, et al. Experimental stress fractures of the tibia. Biological and mechanical aetiology in rabbits [J]. J Bone Joint Surg Br, 1990, 72(3): 370–375.

    Google Scholar 

  32. Turner C H, Rho J, Takano Y, et al. The elastic properties of trabecular and cortical bone tissues are similar: results from two microscopic measurement techniques [J]. J Biomech, 1999, 32(4): 437–441.

    Article  Google Scholar 

  33. Rho J Y, Ashman R B, Turner C H. Young’s modulus of trabecular and cortical bone material: Ultrasonic and microtensile measurements [J]. J Biomech, 1993, 26(2): 111–119.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Ding  (丁 海).

Additional information

Foundation item: the National High Technology Research and Development Program (863) of China (No. 2006AA02A137; the Postgraduate Creativity Foundation of Shanghai Jiaotong University (No. BXJ 0730)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Zhu, Za., Dai, Kr. et al. Research on damage in trabecular bone of the healthy human acetabulum at small strains using nonlinear micro-finite element analysis. J. Shanghai Jiaotong Univ. (Sci.) 13, 623–628 (2008). https://doi.org/10.1007/s12204-008-0623-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12204-008-0623-5

Key words

CLC number

Navigation