Skip to main content
Log in

Time-domain terahertz spectroscopy in high magnetic fields

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

There are a variety of elementary and collective terahertz-frequency excitations in condensed matter whose magnetic field dependence contains significant insight into the states and dynamics of the electrons involved. Often, determining the frequency, temperature, and magnetic field dependence of the optical conductivity tensor, especially in high magnetic fields, can clarify the microscopic physics behind complex many-body behaviors of solids. While there are advanced terahertz spectroscopy techniques as well as high magnetic field generation techniques available, a combination of the two has only been realized relatively recently. Here, we review the current state of terahertz time-domain spectroscopy (THz-TDS) experiments in high magnetic fields. We start with an overview of time-domain terahertz detection schemes with a special focus on how they have been incorporated into optically accessible high-field magnets. Advantages and disadvantages of different types of magnets in performing THz-TDS experiments are also discussed. Finally, we highlight some of the new fascinating physical phenomena that have been revealed by THz-TDS in high magnetic fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nuss M C, Orenstein J. Terahertz time-domain spectroscopy. In: Grüner G, ed. Millimeter and Sub-millimeter Wave Spectroscopy of Solids. Berlin: Springer-Verlag, 1998, Chap. 2, 7–50

    Google Scholar 

  2. Schmuttenmaer C A. Exploring dynamics in the far-infrared with terahertz spectroscopy. Chemical Reviews, 2004, 104(4): 1759–1780

    Google Scholar 

  3. Lee Y S. Principles of Terahertz Science and Technology, vol. 170. Berlin: Springer, 2009

    Google Scholar 

  4. Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166

    Google Scholar 

  5. Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586

    Google Scholar 

  6. Neu J, Schmuttenmaer C A. Tutorial: an introduction to terahertz time domain spectroscopy (THz-TDS). Journal of Applied Physics, 2018, 124(23): 231101

    Google Scholar 

  7. Cong K, Noe G T II, Kono J. Excitons in Magnetic Fields. Oxford: Elsevier, 2018, 63–81

    Google Scholar 

  8. MacDonald A H, Rezayi E H. Fractional quantum Hall effect in a two-dimensional electron-hole fluid. Physical Review B: Condensed Matter and Materials Physics, 1990, 42(5): 3224–3227

    Google Scholar 

  9. Dzyubenko A B, Lozovik Y E. Symmetry of Hamiltonians of quantum two-component systems: condensate of composite particles as an exact eigenstate. Journal of Physics A, Mathematical and General, 1991, 24(2): 415–424

    Google Scholar 

  10. Apal’kov V M, Rashba E I. Magnetospectroscopy of 2D electron-gas: cusps in emission-spectra and Coulomb gaps. JETP Letters, 1991, 53: 442–448

    Google Scholar 

  11. Rashba E I, Sturge M D, Yoon H W, Pfeiffer L N. Hidden symmetry and the magnetically induced “Mott transition” in quantum wells containing an electron gas. Solid State Communications, 2000, 114(11): 593–596

    Google Scholar 

  12. Proust C, Taillefer L. The remarkable underlying ground states of cuprate superconductors. Annual Review of Condensed Matter Physics, 2019, 10(1): 409–429

    Google Scholar 

  13. Shi Z, Baity P G, Sasagawa T, Popović D. Vortex phase diagram and the normal state of cuprates with charge and spin orders. Science Advances, 2020, 6(7): eaay8946

    Google Scholar 

  14. Ran S, Liu I L, Eo Y S, Campbell D J, Neves P M, Fuhrman W T, Saha S R, Eckberg C, Kim H, Graf D, Balakirev F, Singleton J, Paglione J, Butch N P. Extreme magnetic field-boosted superconductivity. Nature Physics, 2019, 15(12): 1250–1254

    Google Scholar 

  15. Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, Shepard K L. Multicomponent fractional quantum Hall effect in graphene. Nature Physics, 2011, 7(9): 693–696

    Google Scholar 

  16. Moll P J, Potter A C, Nair N L, Ramshaw B J, Modic K A, Riggs S, Zeng B, Ghimire N J, Bauer E D, Kealhofer R, Ronning F, Analytis J G. Magnetic torque anomaly in the quantum limit of Weyl semimetals. Nature Communications, 2016, 7(1): 12492

    Google Scholar 

  17. Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525

    Google Scholar 

  18. Wu Q, Zhang X C. Ultrafast electro-optic field sensors. Applied Physics Letters, 1996, 68(12): 1604–1606

    Google Scholar 

  19. Nahata A, Weling A S, Heinz T F. A wide-band coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Applied Physics Letters, 1996, 69(16): 2321–2323

    Google Scholar 

  20. Wu Q, Zhang X C. 7 terahertz broadband GaP electro-optic sensor. Applied Physics Letters, 1997, 70(14): 1784–1786

    Google Scholar 

  21. Huber R, Brodschelm A, Tauser F, Leitenstorfer A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Applied Physics Letters, 2000, 76(22): 3191–3193

    Google Scholar 

  22. Liu K, Xu J, Zhang X C. GaSe crystals for broadband terahertz wave detection. Applied Physics Letters, 2004, 85(6): 863–865

    Google Scholar 

  23. Smith P R, Auston D H, Nuss M C. Subpicosecond photoconducting dipole antennas. IEEE Journal of Quantum Electronics, 1988, 24(2): 255–260

    Google Scholar 

  24. Lu X, Karpowicz N, Zhang X C. Broadband terahertz detection with selected gases. Journal of the Optical Society of America B, Optical Physics, 2009, 26(9): A66–A73

    Google Scholar 

  25. Elzinga P A, Kneisler R J, Lytle F E, Jiang Y, King G B, Laurendeau N M. Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling. Applied Optics, 1987, 26(19): 4303–4309

    Google Scholar 

  26. Janke C, Först M, Nagel M, Kurz H, Bartels A. Asynchronous optical sampling for high-speed characterization of integrated resonant terahertz sensors. Optics Letters, 2005, 30(11): 1405–1407

    Google Scholar 

  27. Yasui T, Saneyoshi E, Araki T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Applied Physics Letters, 2005, 87(6): 061101

    Google Scholar 

  28. Bartels A, Cerna R, Kistner C, Thoma A, Hudert F, Janke C, Dekorsy T. Ultrafast time-domain spectroscopy based on highspeed asynchronous optical sampling. Review of Scientific Instruments, 2007, 78(3): 035107

    Google Scholar 

  29. Spencer B, Smith W F, Hibberd M T, Dawson P, Beck M, Bartels A, Guiney I, Humphreys C J, Graham D M. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique. Applied Physics Letters, 2016, 108(21): 212101

    Google Scholar 

  30. Tauser F, Rausch C, Posthumus J H, Lison F. Electronically controlled optical sampling using 100 MHz repetition rate fiber lasers. In: Proceedings of Commercial and Biomedical Applications of Ultrafast Lasers VIII. San Jose: SPIE, 2008, 688100

    Google Scholar 

  31. Kim Y, Yee D S. High-speed terahertz time-domain spectroscopy based on electronically controlled optical sampling. Optics Letters, 2010, 35(22): 3715–3717

    Google Scholar 

  32. Liu J, Mbonye M K, Mendis R, Mittleman D M. Measurement of terahertz pulses using electronically controlled optical sampling (ECOPS). In: Proceedings of CLEO/QELS: 2010 Laser Science to Photonic Applications. San Jose: IEEE, 2010, 1–2

    Google Scholar 

  33. Noe G T II, Zhang Q, Lee J, Kato E, Woods G L, Nojiri H, Kono J. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics, 2014, 53(26): 5850–5855

    Google Scholar 

  34. Molter D, Ellrich F, Weinland T, George S, Goiran M, Keilmann F, Beigang R, Léotin J. High-speed terahertz time-domain spectroscopy of cyclotron resonance in pulsed magnetic field. Optics Express, 2010, 18(25): 26163–26168

    Google Scholar 

  35. Teo S M, Ofori-Okai B K, Werley C A, Nelson K A. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Review of Scientific Instruments, 2015, 86(5): 051301

    Google Scholar 

  36. Minami Y, Hayashi Y, Takeda J, Katayama I. Single-shot measurement of a terahertz electric-field waveform using a reflective echelon mirror. Applied Physics Letters, 2013, 103(5): 051103

    Google Scholar 

  37. Topp M, Rentzepis P, Jones R. Time-resolved absorption spectroscopy in the 10–12-sec range. Journal of Applied Physics, 1971, 42(9): 3415–3419

    Google Scholar 

  38. Topp M, Rentzepis P, Jones R. Time resolved picosecond emission spectroscopy of organic dye lasers. Chemical Physics Letters, 1971, 9(1): 1–5

    Google Scholar 

  39. Kim K Y, Yellampalle B, Taylor A J, Rodriguez G, Glownia J H. Single-shot terahertz pulse characterization via two-dimensional electro-optic imaging with dual echelons. Optics Letters, 2007, 32(14): 1968–1970

    Google Scholar 

  40. Katayama I, Sakaibara H, Takeda J. Real-time time-frequency imaging of ultrashort laser pulses using an echelon mirror. Japanese Journal of Applied Physics, 2011, 50(10): 102701

    Google Scholar 

  41. Noe G T II, Katayama I, Katsutani F, Allred J J, Horowitz J A, Sullivan D M, Zhang Q, Sekiguchi F, Woods G L, Hoffmann M C, Nojiri H, Takeda J, Kono J. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields. Optics Express, 2016, 24(26): 30328–30337

    Google Scholar 

  42. Makihara T, Hayashida K, Noe G T II, Li X, Kono J. Magnonic quantum simulator of antiresonant ultrastrong light-matter coupling. 2020, arXiv:2008:10721

  43. Jiang Z, Zhang X C. Electro-optic measurement of THz field pulses with a chirped optical beam. Applied Physics Letters, 1998, 72(16): 1945–1947

    Google Scholar 

  44. Jiang Z, Zhang X C. Single-shot spatiotemporal terahertz field imaging. Optics Letters, 1998, 23(14): 1114–1116

    Google Scholar 

  45. Matlis N, Plateau G, van Tilborg J, Leemans W. Single-shot spatiotemporal measurements of ultrashort THz waveforms using temporal electric-field cross correlation. Journal of the Optical Society of America B, Optical Physics, 2011, 28(1): 23–27

    Google Scholar 

  46. Noe G T II, Zhang Q, Lee J, Kato E, Woods G L, Nojiri H, Kono J. Rapid scanning terahertz time-domain magnetospectroscopy with a table-top repetitive pulsed magnet. Applied Optics, 2014, 53(26): 5850–5855

    Google Scholar 

  47. Walecki W, Some D, Kozlov V, Nurmikko A. Terahertz electromagnetic transients as probes of a two-dimensional electron gas. Applied Physics Letters, 1993, 63(13): 1809–1811

    Google Scholar 

  48. Some D, Nurmikko A V. Real-time electron cyclotron oscillations observed by terahertz techniques in semiconductor heterostructures. Applied Physics Letters, 1994, 65(26): 3377–3379

    Google Scholar 

  49. Some D, Nurmikko A V. Coherent transient cyclotron emission from photoexcited GaAs. Physical Review B: Condensed Matter and Materials Physics, 1994, 50(8): 5783–5786

    Google Scholar 

  50. Some D, Nurmikko A V. Ultrafast photoexcited cyclotron emission: contributions from real and virtual excitations. Physical Review B: Condensed Matter and Materials Physics, 1996, 53(20): R13295–R13298

    Google Scholar 

  51. Crooker S A. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments, 2002, 73(9): 3258–3264

    Google Scholar 

  52. Wang X, Hilton D J, Ren L, Mittleman D M, Kono J, Reno J L. Terahertz time-domain magnetospectroscopy of a high-mobility two-dimensional electron gas. Optics Letters, 2007, 32(13): 1845–1847

    Google Scholar 

  53. Sumikura H, Nagashima T, Kitahara H, Hangyo M. Development of a cryogen-free terahertz time-domain magnetooptical measurement system. Japanese Journal of Applied Physics, 2007, 46(4A): 1739–1744

    Google Scholar 

  54. Ikebe Y, Shimano R. Characterization of doped silicon in low carrier density region by terahertz frequency Faraday effect. Applied Physics Letters, 2008, 92(1): 012111

    Google Scholar 

  55. Scalari G, Maissen C, Turcinková D, Hagenmüller D, De Liberato S, Ciuti C, Reichl C, Schuh D, Wegscheider W, Beck M, Faist J. Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial. Science, 2012, 335(6074): 1323–1326

    Google Scholar 

  56. George D K, Stier A V, Ellis C T, McCombe B D, Cerne J, Markelz A G. Terahertz magneto-optical polarization modulation spectroscopy. Journal of the Optical Society of America. B, Optical Physics, 2012, 29(6): 1406–1412

    Google Scholar 

  57. Wood C D, Mistry D, Li L H, Cunningham J E, Linfield E H, Davies A G. On-chip terahertz spectroscopic techniques for measuring mesoscopic quantum systems. Review of Scientific Instruments, 2013, 84(8): 085101

    Google Scholar 

  58. Wu L, Salehi M, Koirala N, Moon J, Oh S, Armitage N P. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science, 2016, 354(6316): 1124–1127

    MathSciNet  MATH  Google Scholar 

  59. Crooker S. Fiber-coupled antennas for ultrafast coherent terahertz spectroscopy in low temperatures and high magnetic fields. Review of Scientific Instruments, 2002, 73(9): 3258–3264

    Google Scholar 

  60. Wang X, Belyanin A A, Crooker S A, Mittleman D M, Kono J. Interference-induced terahertz transparency in a semiconductor magneto-plasma. Nature Physics, 2010, 6(2): 126–130

    Google Scholar 

  61. Arikawa T, Wang X, Hilton D J, Reno J L, Pan W, Kono J. Quantum control of a Landau-quantized two-dimensional electron gas in a GaAs quantum well using coherent terahertz pulses. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(24): 241307

    Google Scholar 

  62. Arikawa T, Wang X, Belyanin A A, Kono J. Giant tunable Faraday effect in a semiconductor magneto-plasma for broadband terahertz polarization optics. Optics Express, 2012, 20(17): 19484–19492

    Google Scholar 

  63. Zhang Q, Arikawa T, Kato E, Reno J L, Pan W, Watson J D, Manfra M J, Zudov M A, Tokman M, Erukhimova M, Belyanin A, Kono J. Superradiant decay of cyclotron resonance of two-dimensional electron gases. Physical Review Letters, 2014, 113(4): 047601

    Google Scholar 

  64. Zhang Q, Lou M, Li X, Reno J L, Pan W, Watson J D, Manfra M J, Kono J. Collective non-perturbative coupling of 2D electrons with high-quality-factor terahertz cavity photons. Nature Physics, 2016, 12(11): 1005–1011

    Google Scholar 

  65. Li X, Bamba M, Zhang Q, Fallahi S, Gardner G C, Gao W, Lou M, Yoshioka K, Manfra M J, Kono J. Vacuum Bloch-Siegert shift in Landau polaritons with ultra-high cooperativity. Nature Photonics, 2018, 12(6): 324–329

    Google Scholar 

  66. Li X, Bamba M, Yuan N, Zhang Q, Zhao Y, Xiang M, Xu K, Jin Z, Ren W, Ma G, Cao S, Turchinovich D, Kono J. Observation of Dicke cooperativity in magnetic interactions. Science, 2018, 361(6404): 794–797

    MathSciNet  MATH  Google Scholar 

  67. Toth J, Bird M D, Bole S, O’Reilly J W. Fabrication and assembly of the NHMFL 25 T resistive split magnet. IEEE Transactions on Applied Superconductivity, 2012, 22(3): 4301604

    Google Scholar 

  68. Curtis J A, Burch A D, Barman B, Linn A G, McClintock L M, O’Beirne A L, Stiles M J, Reno J L, McGill S A, Karaiskaj D, Hilton D J. Broadband ultrafast terahertz spectroscopy in the 25 T Split Florida-Helix. Review of Scientific Instruments, 2018, 89(7): 073901

    Google Scholar 

  69. Curtis J A, Tokumoto T, Nolan N K, McClintock L M, Cherian J G, McGill S A, Hilton D J. Ultrafast pump-probe spectroscopy in gallium arsenide at 25 T. Optics Letters, 2014, 39(19): 5772–5775

    Google Scholar 

  70. Paul J, Stevens C E, Smith R P, Dey P, Mapara V, Semenov D, McGill S A, Kaindl R A, Hilton D J, Karaiskaj D. Coherent two-dimensional Fourier transform spectroscopy using a 25 Tesla resistive magnet. Review of Scientific Instruments, 2019, 90(6): 063901

    Google Scholar 

  71. Kim K Y, Taylor A J, Glownia J H, Rodriguez G. Coherent control of terahertz supercontinuum generation in ultrafast laser-gas interactions. Nature Photonics, 2008, 2(10): 605–609

    Google Scholar 

  72. Kress M, Löffler T, Eden S, Thomson M, Roskos H G. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122

    Google Scholar 

  73. Molter D, Torosyan G, Ballon G, Drigo L, Beigang R, Léotin J. Step-scan time-domain terahertz magneto-spectroscopy. Optics Express, 2012, 20(6): 5993–6002

    Google Scholar 

  74. Noe G T II, Nojiri H, Lee J, Woods G L, Léotin J, Kono J. A table-top, repetitive pulsed magnet for nonlinear and ultrafast spectroscopy in high magnetic fields up to 30 T. Review of Scientific Instruments, 2013, 84(12): 123906

    Google Scholar 

  75. Post K W, Legros A, Rickel D G, Singleton J, McDonald R D, He X, Bozovic I, Xu X, Shi X, Armitage N P, Crooker S A. Observation of cyclotron resonance and measurement of the hole mass in optimally-doped La2−xSrxCuO4. 2020, arXiv:2006.09131

  76. Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America B, Optical Physics, 2008, 25(7): B6–B19

    Google Scholar 

  77. McCombe B D, Wagner R J. Intraband magneto-optical studies of semiconductors in the far-infrared. I. In: Marton L, ed. Advances in Electronics and Electron Physics, vol. 37. New York: Academic Press, 1975, 1–78

    Google Scholar 

  78. Mittleman D M. Sensing with Terahertz Radiation. Berlin: Springer, 2003

    Google Scholar 

  79. Basov D N, Averitt R D, VanDerMarel D, Dressel M, Haule K. Electrodynamics of correlated electron materials. Reviews of Modern Physics, 2011, 83(2): 471–541

    Google Scholar 

  80. Dexheimer S L. Terahertz Spectroscopy: Principles and Applications. Boca Raton, Florida: CRC press, 2017

    Google Scholar 

  81. Kézsmárki I, Szaller D, Bordács S, Kocsis V, Tokunaga Y, Taguchi Y, Murakawa H, Tokura Y, Engelkamp H, Rõõm T, Nagel U. Oneway transparency of four-coloured spin-wave excitations in multiferroic materials. Nature Communications, 2014, 5(1): 3203

    Google Scholar 

  82. Bordács S, Kézsmárki I, Szaller D, Demkó L, Kida N, Murakawa H, Onose Y, Shimano R, Rõõm T, Nagel U, Miyahara S, Furukawa N, Tokura Y. Chirality of matter shows up via spin excitations. Nature Physics, 2012, 8(10): 734–738

    Google Scholar 

  83. Penc K, Romhányi J, Rõõm T, Nagel U, Antal A, Fehér T, Jánossy A, Engelkamp H, Murakawa H, Tokura Y, Szaller D, Bordács S, Kézsmárki I. Spin-stretching modes in anisotropic magnets: spin-wave excitations in the multiferroic Ba2CoGe2O7. Physical Review Letters, 2012, 108(25): 257203

    Google Scholar 

  84. Peedu L, Kocsis V, Szaller D, Viirok J, Nagel U, Rõõm T, Farkas D G, Bordács S, Kamenskyi D L, Zeitler U, Tokunaga Y, Taguchi Y, Tokura Y, Kézsmárki I. Spin excitations of magnetoelectric LiNiPO4 in multiple magnetic phases. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(2): 024406

    Google Scholar 

  85. Talbayev D, LaForge A D, Trugman S A, Hur N, Taylor A J, Averitt R D, Basov D N. Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites. Physical Review Letters, 2008, 101(24): 247601

    Google Scholar 

  86. Mihály L, Talbayev D, Kiss L F, Zhou J, Fehér T, Jánossy A. Field-frequency mapping of the electron spin resonance in the paramagnetic and antiferromagnetic states of LaMnO3. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(2): 024414

    Google Scholar 

  87. Mihály L, Fehér T, Dóra B, Náfrádi B, Berger H, Forró L. Spin resonance in the ordered magnetic state of Ni5(TeO3)4Cl2. Physical Review B: Condensed Matter and Materials Physics, 2006, 74(17): 174403

    Google Scholar 

  88. Kézsmárki I, Nagel U, Bordács S, Fishman R S, Lee J H, Yi H T, Cheong S W, Rõõm T. Optical diode effect at spin-wave excitations of the room-temperature multiferroic BiFeO3. Physical Review Letters, 2015, 115(12): 127203

    Google Scholar 

  89. Autore M, Engelkamp H, D’Apuzzo F, Gaspare A D, Pietro P D, Vecchio I L, Brahlek M, Koirala N, Oh S, Lupi S. Observation of magnetoplasmons in Bi2Se3 topological insulator. ACS Photonics, 2015, 2(9): 1231–1235

    Google Scholar 

  90. Wang Z, Reschke S, Hüvonen D, Do S H, Choi K Y, Gensch M, Nagel U, Rõõm T, Loidl A. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Physical Review Letters, 2017, 119(22): 227202

    Google Scholar 

  91. Sahasrabudhe A, Kaib D A S, Reschke S, German R, Koethe T C, Buhot J, Kamenskyi D, Hickey C, Becker P, Tsurkan V, Loidl A, Do S H, Choi K Y, Grüninger M, Winter S M, Wang Z, Valentí R, van Loosdrecht P H M. High-field quantum disordered state in α-RuCl3: spin flips, bound states, and multi-particle continuum. Physical Review B: Condensed Matter and Materials Physics, 2020, 101(14): 140410

    Google Scholar 

  92. LaForge A D, Frenzel A, Pursley B C, Lin T, Liu X, Shi J, Basov D N. Optical characterization of Bi2Se3 in a magnetic field: Infrared evidence for magnetoelectric coupling in a topological insulator material. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(12): 125120

    Google Scholar 

  93. Schafgans A, Post K W, Taskin A A, Ando Y, Qi X L, Chapler B C, Basov D N. Landau level spectroscopy of surface states in the topological insulator Bi0.91Sb0.09 via magneto-optics. Physical Review B: Condensed Matter and Materials Physics, 2012, 85(19): 195440

    Google Scholar 

  94. Schafgans A A, LaForge A D, Dordevic S V, Qazilbash M M, Padilla W J, Burch K S, Li Z Q, Komiya S, Ando Y, Basov D N. Towards a two-dimensional superconducting state of La2−xSrx-CuO4 in a moderate external magnetic field. Physical Review Letters, 2010, 104(15): 157002

    Google Scholar 

  95. Dresselhaus G, Kip A F, Kittel C. Cyclotron resonance of electrons and holes in silicon and germanium crystals. Physical Review, 1955, 98(2): 368–384

    Google Scholar 

  96. Lax B, Mavroides J G. Cyclotron resonance. In: Seitz F, Turnbull D, eds. Solid State Physics, vol. 11. New York: Academic Press, 1960, 261–400

    Google Scholar 

  97. McCombe B D, Wagner R J. Intraband magneto-optical studies of semiconductors in the far-infrared. II. In: Marton L, ed. Advances in Electronics and Electron Physics, vol. 38. New York: Academic Press, 1975, 1–53

    Google Scholar 

  98. Kono J. Cyclotron resonance. In: Kaufmann E N, et al. (eds.) Methods in Materials Research. New York: John Wiley & Sons, 2001, Chap. 9b.2

    Google Scholar 

  99. Kono J, Miura N. Cyclotron resonance in high magnetic fields. In: Miura N, Herlach F, eds. High Magnetic Fields: Science and Technology, Volume III. Singapore: World Scientific, 2006, 61–90

    Google Scholar 

  100. Hilton D J, Arikawa T, Kono J. Cyclotron resonance. In: Kaufmann E N, ed. Characterization of Materials, 2nd edition. New York: John Wiley & Sons, Inc., 2012, 1–15

    Google Scholar 

  101. Wang X, Hilton D J, Reno J L, Mittleman D M, Kono J. Direct measurement of cyclotron coherence times of high-mobility two-dimensional electron gases. Optics Express, 2010, 18(12): 12354–12361

    Google Scholar 

  102. Dicke R H. Coherence in spontaneous radiation processes. Physical Review, 1954, 93(1): 99–110

    MATH  Google Scholar 

  103. Miura N, Yokoi H, Kono J, Sasaki S. High field cyclotron resonance and the electron effective masses in AlAs. Solid State Communications, 1991, 79(12): 1039–1042

    Google Scholar 

  104. Kono J, Miura N, Takeyama S, Yokoi H, Fujimori N, Nishibayashi Y, Nakajima T, Tsuji K, Yamanaka M. Observation of cyclotron resonance in low-mobility semiconductors using pulsed ultra-high magnetic fields. Physica B, Condensed Matter, 1993, 184(1–4): 178–183

    Google Scholar 

  105. Kono J, Takeyama S, Takamasu T, Miura N, Fujimori N, Nishibayashi Y, Nakajima T, Tsuji K. High-field cyclotron resonance and valence-band structure in semiconducting diamond. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(15): 10917–10925

    Google Scholar 

  106. Kono J, Takeyama S, Yokoi H, Miura N, Yamanaka M, Shinohara M, Ikoma K. High-field cyclotron resonance and impurity transition in n-type and p-type 3C-SiC at magnetic fields up to 175 T. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(15): 10909–10916

    Google Scholar 

  107. Knap W, Contreras S, Alause H, Skierbiszewski C, Camassel J, Dyakonov M, Robert J L, Yang J, Chen Q, Asif Khan M, Sadowski M L, Huant S, Yang F H, Goiran M, Leotin J, Shur M S. Cyclotron resonance and quantum hall effect studies of the two-dimensional electron gas confined at the GaN/AlGaN interface. Applied Physics Letters, 1997, 70(16): 2123–2125

    Google Scholar 

  108. Wang Y, Kaplan R, Ng H K, Doverspike K, Gaskill D K, Ikedo T, Akasaki I, Amono H. Magneto-optical studies of GaN and GaN/AlxGa1−xN: Donor Zeeman spectroscopy and two dimensional electron gas cyclotron resonance. Journal of Applied Physics, 1996, 79(10): 8007–8010

    Google Scholar 

  109. Cheng B, Taylor P, Folkes P, Rong C, Armitage N P. Magnetoterahertz response and Faraday rotation from massive dirac fermions in the topological crystalline insulator Pb0.5Sn0.5Te. Physical Review Letters, 2019, 122(9): 097401

    Google Scholar 

  110. Jeffries C D. Electron-hole condensation in semiconductors: electrons and holes condense into freely moving liquid metallic droplets, a plasma phase with novel properties. Science, 1975, 189(4207): 955–964

    Google Scholar 

  111. Zhang Q, Wang Y, Gao W, Long Z, Watson J D, Manfra M J, Belyanin A, Kono J. Stability of high-density two-dimensional excitons against a Mott transition in high magnetic fields probed by coherent terahertz spectroscopy. Physical Review Letters, 2016, 117(20): 207402

    Google Scholar 

  112. Li X, Yoshioka K, Zhang Q, Marquez Peraca N, Katsutani F, Gao W, Noe G T II, Watson J D, Manfra M J, Katayama I, Takeda J, Kono J. Observation of terahertz gain in two-dimensional magnetoexcitons. 2020, arXiv:2004.11459

  113. Hangyo M, Tani M, Nagashima T. Terahertz time-domain spectroscopy of solids: a review. International Journal of Infrared and Millimeter Waves, 2005, 26(12): 1661–1690

    Google Scholar 

  114. von Klitzing K, Dorda G, Pepper M. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Physical Review Letters, 1980, 45(6): 494–497

    Google Scholar 

  115. Ikebe Y, Morimoto T, Masutomi R, Okamoto T, Aoki H, Shimano R. Optical Hall effect in the integer quantum Hall regime. Physical Review Letters, 2010, 104(25): 256802

    Google Scholar 

  116. Shimano R, Yumoto G, Yoo J Y, Matsunaga R, Tanabe S, Hibino H, Morimoto T, Aoki H. Quantum Faraday and Kerr rotations in graphene. Nature Communications, 2013, 4(1): 1841

    Google Scholar 

  117. Fiebig M. Revival of the magnetoelectric effect. Journal of Physics D, Applied Physics, 2005, 38(8): R123–R152

    Google Scholar 

  118. Yu S, Dhanasekhar C, Adyam V, Deckoff-Jones S, Man M K L, Madéo J, Wong E L, Harada T, Murali Krishna M B, Dani K M, Talbayev D. Terahertz-frequency magnetoelectric effect in Ni-doped CaBaCo4O7. Physical Review B, 2017, 96(9): 094421

    Google Scholar 

  119. Armitage N P, Wu L. On the matter of topological insulators as magnetoelectrics. SciPost Physics, 2019, 6: 046

    MathSciNet  Google Scholar 

  120. Essin A M, Moore J E, Vanderbilt D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Physical Review Letters, 2009, 102(14): 146805

    Google Scholar 

  121. Maciejko J, Qi X L, Drew H D, Zhang S C. Topological quantization in units of the fine structure constant. Physical Review Letters, 2010, 105(16): 166803

    Google Scholar 

  122. Morimoto T, Furusaki A, Nagaosa N. Topological magnetoelectric effects in thin films of topological insulators. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(8): 085113

    Google Scholar 

  123. Qi X L, Hughes T L, Zhang S C. Topological field theory of time-reversal invariant insulators. Physical Review B: Condensed Matter and Materials Physics, 2008, 78(19): 195424

    Google Scholar 

  124. Tse W K, MacDonald A H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Physical Review Letters, 2010, 105(5): 057401

    Google Scholar 

  125. Tse W K, MacDonald A H. Magneto-optical Faraday and Kerr effects in topological insulator films and in other layered quantized Hall systems. Physical Review B: Condensed Matter and Materials Physics, 2011, 84(20): 205327

    Google Scholar 

  126. Wang J, Lian B, Qi X L, Zhang S C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Physical Review B: Condensed Matter and Materials Physics, 2015, 92(8): 081107

    Google Scholar 

  127. Zhang D, Shi M, Zhu T, Xing D, Zhang H, Wang J. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Physical Review Letters, 2019, 122(20): 206401

    Google Scholar 

  128. Wilczek F. Two applications of axion electrodynamics. Physical Review Letters, 1987, 58(18): 1799–1802

    Google Scholar 

  129. Hancock J N, van Mechelen J L, Kuzmenko A B, van der Marel D, Brüne C, Novik E G, Astakhov G V, Buhmann H, Molenkamp L W. Surface state charge dynamics of a high-mobility three-dimensional topological insulator. Physical Review Letters, 2011, 107(13): 136803

    Google Scholar 

  130. Jenkins G S, Sushkov A B, Schmadel D C, Butch N P, Syers P, Paglione J, Drew H D. Terahertz Kerr and reflectivity measurements on the topological insulator Bi2Se3. Physical Review B: Condensed Matter and Materials Physics, 2010, 82(12): 125120

    Google Scholar 

  131. Valdés Aguilar R, Stier A V, Liu W, Bilbro L S, George D K, Bansal N, Wu L, Cerne J, Markelz A G, Oh S, Armitage N P. Terahertz response and colossal Kerr rotation from the surface states of the topological insulator Bi2Se3. Physical Review Letters, 2012, 108(8): 087403

    Google Scholar 

  132. Wu L, Tse W K, Brahlek M, Morris C M, Aguilar R V, Koirala N, Oh S, Armitage N P. High-resolution Faraday rotation and electron-phonon coupling in surface states of the bulk-insulating topological insulator Cu0.02Bi2Se3. Physical Review Letters, 2015, 115(21): 217602

    Google Scholar 

  133. Dziom V, Shuvaev A, Pimenov A, Astakhov G V, Ames C, Bendias K, Böttcher J, Tkachov G, Hankiewicz E M, Brüne C, Buhmann H, Molenkamp L W. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nature Communications, 2017, 8(1): 15197

    Google Scholar 

  134. Li X, Yoshioka K, Xie M, Noe G T, Lee W, Marquez Peraca N, Gao W, Hagiwara T, Handegård Ø S, Nien L W, Nagao T, Kitajima M, Nojiri H, Shih C K, MacDonald A H, Katayama I, Takeda J, Fiete G A, Kono J. Terahertz Faraday and Kerr rotation spectroscopy of Bi1−xSbx films in high magnetic fields up to 30 Tesla. Physical Review B: Condensed Matter and Materials Physics, 2019, 100(11): 115145

    Google Scholar 

  135. Okada K N, Takahashi Y, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Ogawa N, Kawasaki M, Tokura Y. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nature Communications, 2016, 7(1): 12245

    Google Scholar 

  136. Morris C M, Valdés Aguilar R, Ghosh A, Koohpayeh S M, Krizan J, Cava R J, Tchernyshyov O, McQueen T M, Armitage N P. Hierarchy of bound states in the one-dimensional ferromagnetic Ising chain CoNb2O6 investigated by high-resolution time-domain terahertz spectroscopy. Physical Review Letters, 2014, 112(13): 137403

    Google Scholar 

  137. Little A, Wu L, Lampen-Kelley P, Banerjee A, Patankar S, Rees D, Bridges C A, Yan J Q, Mandrus D, Nagler S E, Orenstein J. Antiferromagnetic resonance and terahertz continuum in α-RuCl3. Physical Review Letters, 2017, 119(22): 227201

    Google Scholar 

  138. Wu L, Little A, Aldape E E, Rees D, Thewalt E, Lampen-Kelley P, Banerjee A, Bridges C A, Yan J Q, Boone D, Patankar S, Goldhaber-Gordon D, Mandrus D, Nagler S E, Altman E, Orenstein J. Field evolution of magnons in α-RuCl3 by highresolution polarized terahertz spectroscopy. Physical Review. B, 2018, 98(9): 094425

    Google Scholar 

  139. Ozel I O, Belvin C A, Baldini E, Kimchi I, Do S, Choi K Y, Gedik N. Magnetic field-dependent low-energy magnon dynamics in α-RuCl3. Physical Review. B, 2019, 100(8): 085108

    Google Scholar 

  140. Shi L, Liu Y Q, Lin T, Zhang M Y, Zhang S J, Wang L, Shi Y G, Dong T, Wang N L. Field-induced magnon excitation and in-gap absorption in the Kitaev candidate RuCl3. Physical Review B: Condensed Matter and Materials Physics, 2018, 98(9): 094414

    Google Scholar 

  141. Yu S, Gao B, Kim J W, Cheong S W, Man M K L, Madéo J, Dani K M, Talbayev D. High-temperature terahertz optical diode effect without magnetic order in polar FeZnMo3O8. Physical Review Letters, 2018, 120(3): 037601

    Google Scholar 

  142. Forn-Díaz P, Lamata L, Rico E, Kono J, Solano E. Ultrastrong coupling regimes of light-matter interaction. Reviews of Modern Physics, 2019, 91(2): 025005

    Google Scholar 

  143. Kockum A F, Miranowicz A, De Liberato S, Savasta S, Nori F. Ultrastrong coupling between light and matter. Nature Reviews Physics, 2019, 1(1): 19–40

    Google Scholar 

  144. Hagenmüller D, De Liberato S, Ciuti C. Ultra-strong coupling between a cavity resonator and the cyclotron transition of a two-dimensional electron gas in the case of an integer filling factor. Physical Review B: Condensed Matter and Materials Physics, 2010, 81(23): 235303

    Google Scholar 

  145. Herrmann G. Resonance and high frequency susceptibility in canted antiferromagnetic substances. Journal of Physics and Chemistry of Solids, 1963, 24(5): 597–606

    Google Scholar 

  146. Artoni M, Birman J L. Polaritonsqueezing: theory and proposed experiment. Quantum Optics: Journal of the European Optical Society Part B, 1989, 1(2): 91–97

    Google Scholar 

  147. Schwendimann P, Quattropani A. Nonclassical properties of polariton states. Europhysics Letters, 1992, 17(4): 355–358

    Google Scholar 

  148. Ciuti C, Bastard G, Carusotto I. Quantumvacuum properties of the intersubband cavity polariton field. Physical Review B: Condensed Matter and Materials Physics, 2005, 72(11): 115303

    Google Scholar 

Download references

Acknowledgements

J. K. acknowledges support from the U.S. Army Research Office (W911NF-17-1-0259), the U.S. National Science Foundation (NSF MRSEC DMR-1720595), the U.S. Department of Energy (DEFG02-06ER46308), and the Robert A. Welch Foundation (C-1509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrey Baydin or Junichiro Kono.

Additional information

Andrey Baydin is a postdoctoral scholar in Department of Electrical and Computer Engineering at Rice University, USA. He obtained his Ph.D. degree in Physics from Vanderbilt University, USA in May 2018. His current research interests include ultra-fast spectroscopy of quantum materials and light-matter interaction in the ultrastrong coupling regime.

Takuma Makihara joined Prof. Kono’s laboratory in the spring of 2019, where he focused on terahertz time-domain magnetospectrscopy of orthoferrites using the Rice Advanced Magnet with Broadband Optics. He received his B.S. degree in Physics from Rice University, USA in 2020, and is currently pursuing his Ph.D. at Stanford University, USA with a focus on quantum hardware.

Nicolas Marquez Peraca received his B.S. degree in Physics from University of the Republic in Montevideo, Uruguay in 2016. Before joining Prof. Kono’s laboratory in the fall of 2018, he was a Guest Researcher for two years at National Institute of Standards and Technology in Gaithersburg, MD, USA, where he worked in the electric and opto-electronic characterization of multijunction solar cells. His research interests include ultrafast phenomena in condensed matter physics, terahertz magnetospectroscopy of quantum materials, and quantum technology.

Junichiro Kono is Karl F. Hasselmann Chair in Engineering, Professor in Departments of Electrical & Computer Engineering, Physics & Astronomy, and Materials Science & Nanoengineering, and Chair of Applied Physics at Rice University, USA. He received his B.S. and M.S. degrees in Applied Physics from University of Tokyo, Japan in 1990 and 1992, respectively, and completed his Ph.D. in Physics from State University of New York at Buffalo, USA in 1995. He was a postdoctoral research associate at University of California Santa Barbara, USA from 1995 to 1997, and the W. W. Hansen Experimental Physics Laboratory Fellow in Department of Physics at Stanford University, USA from 1997 to 2000. His current research interests include quantum optics in condensed matter, ultrastrong light-matter coupling, and terahertz science and technology.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baydin, A., Makihara, T., Peraca, N.M. et al. Time-domain terahertz spectroscopy in high magnetic fields. Front. Optoelectron. 14, 110–129 (2021). https://doi.org/10.1007/s12200-020-1101-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1101-4

Keywords

Navigation