Skip to main content
Log in

Performance of integrated optical switches based on 2D materials and beyond

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Applications of optical switches, such as signal routing and data-intensive computing, are critical in optical interconnects and optical computing. Integrated optical switches enabled by two-dimensional (2D) materials and beyond, such as graphene and black phosphorus, have demonstrated many advantages in terms of speed and energy consumption compared to their conventional silicon-based counterparts. Here we review the state-of-the-art of optical switches enabled by 2D materials and beyond and organize them into several tables. The performance tables and future projections show the frontiers of optical switches fabricated from 2D materials and beyond, providing researchers with an overview of this field and enabling them to identify existing challenges and predict promising research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng Q, Bahadori M, Glick M, Rumley S, Bergman K. Recent advances in optical technologies for data centers: a review. Optica, 2018, 5(11): 1354

    Google Scholar 

  2. Cheng Q, Rumley S, Bahadori M, Bergman K. Photonic switching in high performance datacenters. Optics Express, 2018, 26(12): 16022–16043

    Google Scholar 

  3. Geis M W, Spector S J, Williamson R C, Lyszczarz T M. Submicrosecond submilliwatt silicon-on-insulator thermooptic switch. IEEE Photonics Technology Letters, 2004, 16(11): 2514–2516

    Google Scholar 

  4. Dong P, Qian W, Liang H, Shafiiha R, Feng D, Li G, Cunningham J E, Krishnamoorthy A V, Asghari M. Thermally tunable silicon racetrack resonators with ultralow tuning power. Optics Express, 2010, 18(19): 20298–20304

    Google Scholar 

  5. Lee B S, Zhang M, Barbosa F A S, Miller S A, Mohanty A, St-Gelais R, Lipson M. On-chip thermo-optic tuning of suspended microresonators. Optics Express, 2017, 25(11): 12109–12120

    Google Scholar 

  6. Li X, Xu H, Xiao X, Li Z, Yu Y, Yu J. Fast and efficient silicon thermo-optic switching based on reverse breakdown of pn junction. Optics Letters, 2014, 39(4): 751–753

    Google Scholar 

  7. Zhao Y, Wang X, Gao D, Dong J, Zhang X. On-chip programmable pulse processor employing cascaded MZI-MRR structure. Frontiers of Optoelectronics, 2019, 12(2): 148–156

    Google Scholar 

  8. Xu Q, Manipatruni S, Schmidt B, Shakya J, Lipson M. 12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators. Optics Express, 2007, 15(2): 430–436

    Google Scholar 

  9. Manipatruni S, Dokania R K, Schmidt B, Sherwood-Droz N, Poitras C B, Apsel A B, Lipson M. Wide temperature range operation of micrometer-scale silicon electro-optic modulators. Optics Letters, 2008, 33(19): 2185–2187

    Google Scholar 

  10. Timurdogan E, Sorace-Agaskar C M, Sun J, Shah Hosseini E, Biberman A, Watts M R. An ultralow power athermal silicon modulator. Nature Communications, 2014, 5(1): 4008

    Google Scholar 

  11. Ferrari A C, Bonaccorso F, Fal’ko V, Novoselov K S, Roche S, Bøggild P, Borini S, Koppens F H, Palermo V, Pugno N, Garrido J A, Sordan R, Bianco A, Ballerini L, Prato M, Lidorikis E, Kivioja J, Marinelli C, Ryhänen T, Morpurgo A, Coleman J N, Nicolosi V, Colombo L, Fert A, Garcia-Hernandez M, Bachtold A, Schneider G F, Guinea F, Dekker C, Barbone M, Sun Z, Galiotis C, Grigorenko A N, Konstantatos G, Kis A, Katsnelson M, Vandersypen L, Loiseau A, Morandi V, Neumaier D, Treossi E, Pellegrini V, Polini M, Tredicucci A, Williams G M, Hong B H, Ahn J H, Kim J M, Zirath H, van Wees B J, van der Zant H, Occhipinti L, Di Matteo A, Kinloch I A, Seyller T, Quesnel E, Feng X, Teo K, Rupesinghe N, Hakonen P, Neil S R, Tannock Q, Löiwander T, Kinaret J. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7(11): 4598–4810

    Google Scholar 

  12. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907

    Google Scholar 

  13. Sun Z, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

    Google Scholar 

  14. Koos C, Vorreau P, Vallaitis T, Dumon P, Bogaerts W, Baets R, Esembeson B, Biaggio I, Michinobu T, Diederich F, Freude W, Leuthold J. All-optical high-speed signal processing with silicon-organic hybrid slot waveguides. Nature Photonics, 2009, 3(4): 216–219

    Google Scholar 

  15. Melikyan A, Alloatti L, Muslija A, Hillerkuss D, Schindler P C, Li J, Palmer R, Korn D, Muehlbrandt S, Van Thourhout D, Chen B, Dinu R, Sommer M, Koos C, Kohl M, Freude W, Leuthold J. High-speed plasmonic phase modulators. Nature Photonics, 2014, 8(3): 229–233

    Google Scholar 

  16. Mueller T, Xia F, Avouris P. Graphene photodetectors for highspeed optical communications. Nature Photonics, 2010, 4(5): 297–301

    Google Scholar 

  17. Youngblood N, Chen C, Koester S J, Li M. Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current. Nature Photonics, 2015, 9(4): 247–252

    Google Scholar 

  18. Datta I, Chae S H, Bhatt G R, Tadayon M A, Li B, Yu Y, Park C, Park J, Cao L, Basov D N, Hone J, Lipson M. Low-loss composite photonic platform based on 2D semiconductor monolayers. Nature Photonics, 2020, 14(4): 256–262

    Google Scholar 

  19. Wu S, Buckley S, Schaibley J R, Feng L, Yan J, Mandrus D G, Hatami F, Yao W, Vučković J, Majumdar A, Xu X. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature, 2015, 520(7545): 69–72

    Google Scholar 

  20. Ye Y, Wong Z J, Lu X, Ni X, Zhu H, Chen X, Wang Y, Zhang X. Monolayer excitonic laser. Nature Photonics, 2015, 9(11): 733–737

    Google Scholar 

  21. Yao Y, Xia X, Cheng Z, Wei K, Jiang X, Dong J, Zhang H. All-optical modulator using MXene inkjet-printed microring resonator. IEEE Journal of Selected Topics in Quantum Electronics, 2020, doi:https://doi.org/10.1109/JSTQE.2020.2982985

  22. Youngblood N, Li M. Integration of 2D materials on a silicon photonics platform for optoelectronics applications. Nanophotonics, 2016, 6(6): 1205–1218

    Google Scholar 

  23. Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer H L. Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008, 146(9–10): 351–355

    Google Scholar 

  24. Mas-Ballesté R, Gómez-Navarro C, Gómez-Herrero J, Zamora F. 2D materials: to graphene and beyond. Nanoscale, 2011, 3(1): 20–30

    Google Scholar 

  25. Kang K, Xie S, Huang L, Han Y, Huang P Y, Mak K F, Kim C J, Muller D, Park J. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520(7549): 656–660

    Google Scholar 

  26. Tran V, Soklaski R, Liang Y, Yang L. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Physical Review B, 2014, 89(23): 235319

    Google Scholar 

  27. Qiao J, Kong X, Hu Z X, Yang F, Ji W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nature Communications, 2014, 5(1): 4475

    Google Scholar 

  28. Autere A, Jussila H, Dai Y, Wang Y, Lipsanen H, Sun Z. Nonlinear optics with 2D layered materials. Advanced Materials, 2018, 30 (24): 1705963

    Google Scholar 

  29. Li Y, Zhang J, Huang D, Sun H, Fan F, Feng J, Wang Z, Ning C Z. Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity. Nature Nanotechnology, 2017, 12(10): 987–992

    Google Scholar 

  30. Mak K F, Lee C, Hone J, Shan J, Heinz T F. Atomically thin MoS2: a new direct-gap semiconductor. Physical Review Letters, 2010, 105 (13): 136805

    Google Scholar 

  31. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum M W. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2. Advanced Materials, 2011, 23(37): 4248–4253

    Google Scholar 

  32. Hendry E, Hale P J, Moger J, Savchenko A K, Mikhailov S A. Coherent nonlinear optical response of graphene. Physical Review Letters, 2010, 105(9): 097401

    Google Scholar 

  33. Zhang H, Virally S, Bao Q, Ping L K, Massar S, Godbout N, Kockaert P. Z-scan measurement of the nonlinear refractive index of graphene. Optics Letters, 2012, 37(11): 1856–1858

    Google Scholar 

  34. Jiang X, Liu S, Liang W, Luo S, He Z, Ge Y, Wang H, Cao R, Zhang F, Wen Q, Li J, Bao Q, Fan D, Zhang H. Broadband nonlinear photonics in few-layer MXene Ti3C2Tx (T = F, O, or OH). Laser & Photonics Reviews, 2018, 12(2): 1700229

    Google Scholar 

  35. Jiang B, Hao Z, Ji Y, Hou Y, Yi R, Mao D, Gan X, Zhao J. High-efficiency second-order nonlinear processes in an optical microfibre assisted by few-layer GaSe. Light, Science & Applications, 2020, 9 (1): 63

    Google Scholar 

  36. Gu T, Petrone N, McMillan J F, van der Zande A, Yu M, Lo G Q, Kwong D L, Hone J, Wong C W. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photonics, 2012, 6 (8): 554–559

    Google Scholar 

  37. Li J, Liu C, Chen H, Guo J, Zhang M, Dai D. Hybrid silicon photonic devices with two-dimensional materials. Nanophotonics, 2020, doi:https://doi.org/10.1515/nanoph-2020-0093

  38. Miller D. Device requirements for optical interconnects to silicon chips. Proceedings of the IEEE, 2009, 97(7): 1166–1185

    Google Scholar 

  39. Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307

    Google Scholar 

  40. Jia H, Xia Y, Zhang L, Ding J, Fu X, Yang L. Four-port optical switch for fat-tree photonic network-on-chip. Journal of Lightwave Technology, 2017, 35(15): 3237–3241

    Google Scholar 

  41. Lee B G, Dupuis N. Silicon photonic switch fabrics: technology and architecture. Journal of Lightwave Technology, 2019, 37(1): 6–20

    Google Scholar 

  42. Jia H, Zhou T, Zhao Y, Xia Y, Dai J, Zhang L, Ding J, Fu X, Yang L. Six-port optical switch for cluster-mesh photonic network-on-chip. Nanophotonics, 2018, 7(5): 827–835

    Google Scholar 

  43. Zheng D, Doménech J D, Pan W, Zou X, Yan L, Pérez D. Low-loss broadband 5 × 5 non-blocking Si3N4 optical switch matrix. Optics Letters, 2019, 44(11): 2629

    Google Scholar 

  44. Li Z, Zhou L, Lu L, Zhao S, Li D, Chen J. 4 × 4 nonblocking optical switch fabric based on cascaded multimode interferometers. Photonics Research, 2016, 4(1): 21

    Google Scholar 

  45. Seok T J, Quack N, Han S, Muller R S, Wu M C. Large-scale broadband digital silicon photonic switches with vertical adiabatic couplers. Optica, 2016, 3(1): 64

    Google Scholar 

  46. Han S, Seok T J, Quack N, Yoo B W, Wu M C. Large-scale silicon photonic switches with movable directional couplers. Optica, 2015, 2(4): 370

    Google Scholar 

  47. Sun J, Timurdogan E, Yaacobi A, Hosseini E S, Watts M R. Large-scale nanophotonic phased array. Nature, 2013, 493(7431): 195–199

    Google Scholar 

  48. Yang L, Zhou T, Jia H, Yang S, Ding J, Fu X, Zhang L. General architectures for on-chip optical space and mode switching. Optica, 2018, 5(2): 180

    Google Scholar 

  49. Xiong Y, Priti R B, Liboiron-Ladouceur O. High-speed two-mode switch for mode-division multiplexing optical networks. Optica, 2017, 4(9): 1098

    Google Scholar 

  50. Jia H, Zhou T, Zhang L, Ding J, Fu X, Yang L. Optical switch compatible with wavelength division multiplexing and mode division multiplexing for photonic networks-on-chip. Optics Express, 2017, 25(17): 20698–20707

    Google Scholar 

  51. Zhou T, Jia H, Ding J, Zhang L, Fu X, Yang L. On-chip broadband silicon thermo-optic 2×2 four-mode optical switch for optical space and local mode switching. Optics Express, 2018, 26(7): 8375–8384

    Google Scholar 

  52. Koeber S, Palmer R, Lauermann M, Heni W, Elder D L, Korn D, Woessner M, Alloatti L, Koenig S, Schindler P C, Yu H, Bogaerts W, Dalton L R, Freude W, Leuthold J, Koos C. Femtojoule electrooptic modulation using a silicon-organic hybrid device. Light, Science & Applications, 2015, 4(2): e255

    Google Scholar 

  53. Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics, 2010, 4(7): 477–483

    Google Scholar 

  54. Nozaki K, Shinya A, Matsuo S, Suzaki Y, Segawa T, Sato T, Kawaguchi Y, Takahashi R, Notomi M. Ultralow-power all-optical RAM based on nanocavities. Nature Photonics, 2012, 6(4): 248–252

    Google Scholar 

  55. Ono M, Hata M, Tsunekawa M, Nozaki K, Sumikura H, Chiba H, Notomi M. Ultrafast and energy-efficient all-optical switching with graphene-loaded deep-subwavelength plasmonic waveguides. Nature Photonics, 2020, 14(1): 37–43

    Google Scholar 

  56. Hu X, Jiang P, Ding C, Yang H, Gong Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photonics, 2008, 2(3): 185–189

    Google Scholar 

  57. Klein M, Badada B H, Binder R, Alfrey A, McKie M, Koehler M R, Mandrus D G, Taniguchi T, Watanabe K, LeRoy B J, Schaibley J R. 2D semiconductor nonlinear plasmonic modulators. Nature Communications, 2019, 10(1): 3264

    Google Scholar 

  58. Wang H, Yang N, Chang L, Zhou C, Li S, Deng M, Li Z, Liu Q, Zhang C, Li Z, Wang Y. CMOS-compatible all-optical modulator based on the saturable absorption of graphene. Photonics Research, 2020, 8(4): 468

    Google Scholar 

  59. Chen B, Wu H, Xin C, Dai D, Tong L. Flexible integration of freestanding nanowires into silicon photonics. Nature Communications, 2017, 8(1): 20

    Google Scholar 

  60. Yang S, Liu D C, Tan Z L, Liu K, Zhu Z H, Qin S Q. CMOS-compatible WS2-based all-optical modulator. ACS Photonics, 2018, 5(2): 342–346

    Google Scholar 

  61. Yan S, Zhu X, Frandsen L H, Xiao S, Mortensen N A, Dong J, Ding Y. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides. Nature Communications, 2017, 8(1): 14411

    Google Scholar 

  62. Song Q Q, Chen K X, Hu Z F. Low-power broadband thermo-optic switch with weak polarization dependence using a segmented graphene heater. Journal of Lightwave Technology, 2020, 38(6): 1358–1364

    Google Scholar 

  63. Liu Y, Wang H, Wang S, Wang Y, Wang Y, Guo Z, Xiao S, Yao Y, Song Q, Zhang H, Xu K. Highly efficient silicon photonic microheater based on black arsenic-phosphorus. Advanced Optical Materials, 2020, 8(6): 1901526

    Google Scholar 

  64. Cheng Z, Cao R, Guo J, Yao Y, Wei K, Gao S, Wang Y, Dong J, Zhang H. Phosphorene-assisted silicon photonic modulator with fast response time. Nanophotonics, 2020, doi:https://doi.org/10.1515/nanoph-2019-0510

  65. Yu L, Yin Y, Shi Y, Dai D, He S. Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters. Optica, 2016, 3(2): 159

    Google Scholar 

  66. Yu L, Dai D, He S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Applied Physics Letters, 2014, 105(25): 251104

    Google Scholar 

  67. Qiu C, Yang Y, Li C, Wang Y, Wu K, Chen J. All-optical control of light on a graphene-on-silicon nitride chip using thermo-optic effect. Scientific Reports, 2017, 7(1): 17046

    Google Scholar 

  68. Gan S, Cheng C, Zhan Y, Huang B, Gan X, Li S, Lin S, Li X, Zhao J, Chen H, Bao Q. A highly efficient thermo-optic microring modulator assisted by graphene. Nanoscale, 2015, 7(47): 20249–20255

    Google Scholar 

  69. Xu Z, Qiu C, Yang Y, Zhu Q, Jiang X, Zhang Y, Gao W, Su Y. Ultra-compact tunable silicon nanobeam cavity with an energy-efficient graphene micro-heater. Optics Express, 2017, 25(16): 19479–19486

    Google Scholar 

  70. Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder D L, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton L R, Hafner C, Leuthold J. All-plasmonic Mach-Zehnder modulator enabling optical high-speed communication at the microscale. Nature Photonics, 2015, 9(8): 525–528

    Google Scholar 

  71. Cheng Z, Zhu X, Galili M, Frandsen L H, Hu H, Xiao S, Dong J, Ding Y, Oxenløwe L K, Zhang X. Double-layer graphene on photonic crystal waveguide electro-absorption modulator with 12 GHz bandwidth. Nanophotonics, 2019, doi:https://doi.org/10.1515/nanoph-2019-0381

  72. Gan X, Shiue R J, Gao Y, Mak K F, Yao X, Li L, Szep A, Walker D Jr, Hone J, Heinz T F, Englund D. High-contrast electrooptic modulation of a photonic crystal nanocavity by electrical gating of graphene. Nano Letters, 2013, 13(2): 691–696

    Google Scholar 

  73. Hu Y, Pantouvaki M, Van Campenhout J, Brems S, Asselberghs I, Huyghebaert C, Absil P, Van Thourhout D. Broadband 10 Gb/s operation of graphene electro-absorption modulator on silicon. Laser & Photonics Reviews, 2016, 10(2): 307–316

    Google Scholar 

  74. Phare C T, Daniel Lee Y H, Cardenas J, Lipson M. Graphene electro-optic modulator with 30 GHz bandwidth. Nature Photonics, 2015, 9(8): 511–514

    Google Scholar 

  75. Qiu C, Gao W, Vajtai R, Ajayan P M, Kono J, Xu Q. Efficient modulation of 1.55 µm radiation with gated graphene on a silicon microring resonator. Nano Letters, 2014, 14(12): 6811–6815

    Google Scholar 

  76. Liu M, Yin X, Zhang X. Double-layer graphene optical modulator. Nano Letters, 2012, 12(3): 1482–1485

    Google Scholar 

  77. Gao Y, Shiue R J, Gan X, Li L, Peng C, Meric I, Wang L, Szep A, Walker D Jr, Hone J, Englund D. High-speed electro-optic modulator integrated with graphene-boron nitride heterostructure and photonic crystal nanocavity. Nano Letters, 2015, 15(3): 2001–2005

    Google Scholar 

  78. Sorianello V, Midrio M, Contestabile G, Asselberghs I, Van Campenhout J, Huyghebaert C, Goykhman I, Ott A K, Ferrari A C, Romagnoli M. Graphene-silicon phase modulators with gigahertz bandwidth. Nature Photonics, 2018, 12(1): 40–44

    Google Scholar 

  79. Dalir H, Xia Y, Wang Y, Zhang X. Athermal broadband graphene optical modulator with 35 GHz speed. ACS Photonics, 2016, 3(9): 1564–1568

    Google Scholar 

  80. Alloatti L, Palmer R, Diebold S, Pahl K P, Chen B, Dinu R, Fournier M, Fedeli J M, Zwick T, Freude W, Koos C, Leuthold J. 100 GHz silicon-organic hybrid modulator. Light, Science & Applications, 2014, 3(5): e173

    Google Scholar 

  81. Liu M, Yin X, Ulin-Avila E, Geng B, Zentgraf T, Ju L, Wang F, Zhang X. A graphene-based broadband optical modulator. Nature, 2011, 474(7349): 64–67

    Google Scholar 

  82. Miller D A B. Energy consumption in optical modulators for interconnects. Optics Express, 2012, 20(S2 Suppl 2): A293–A308

    Google Scholar 

  83. Qiao L, Tang W, Chu T. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Scientific Reports, 2017, 7(1): 42306

    Google Scholar 

  84. Reed G T, Mashanovich G, Gardes F Y, Thomson D J. Silicon optical modulators. Nature Photonics, 2010, 4(8): 518–526

    Google Scholar 

  85. Yan S, Zhu X, Dong J, Ding Y, Xiao S. 2D materials integrated with metallic nanostructures: fundamentals and optoelectronic applications. Nanophotonics, 2020, doi:https://doi.org/10.1515/nanoph-2020-0074

  86. Ding Y, Guan X, Zhu X, Hu H, Bozhevolnyi S I, Oxenkøwe L K, Jin K J, Mortensen N A, Xiao S. Efficient electro-optic modulation in low-loss graphene-plasmonic slot waveguides. Nanoscale, 2017, 9 (40): 15576–15581

    Google Scholar 

  87. Ma P, Salamin Y, Baeuerle B, Josten A, Heni W, Emboras A, Leuthold J. Plasmonically enhanced graphene photodetector featuring 100 Gbit/s data reception, high responsivity, and compact size. ACS Photonics, 2019, 6(1): 154–161

    Google Scholar 

  88. Ding Y, Cheng Z, Zhu X, Yvind K, Dong J, Galili M, Hu H, Mortensen N A, Xiao S, Oxenkøwe L K. Ultra-compact integrated graphene plasmonic photodetector with bandwidth above 110 GHz. Nanophotonics, 2020, 9(2): 317–325

    Google Scholar 

  89. Ansell D, Radko I P, Han Z, Rodriguez F J, Bozhevolnyi S I, Grigorenko A N. Hybrid graphene plasmonic waveguide modulators. Nature Communications, 2015, 6(1): 8846

    Google Scholar 

  90. Emboras A, Hoessbacher C, Haffner C, Heni W, Koch U, Ma P, Fedoryshyn Y, Niegemann J, Hafner C, Leuthold J. Electrically controlled plasmonic switches and modulators. IEEE Journal of Selected Topics in Quantum Electronics, 2015, 21(4): 276–283

    Google Scholar 

  91. Srinivasan S A, Pantouvaki M, Gupta S, Chen H T, Verheyen P, Lepage G, Roelkens G, Saraswat K, Thourhout D V, Absil P, Campenhout J V. 56 Gb/s germanium waveguide electro-absorption modulator. Journal of Lightwave Technology, 2016, 34(2): 419–424

    Google Scholar 

  92. Chen L, Dong P, Lipson M. High performance germanium photodetectors integrated on submicron silicon waveguides by low temperature wafer bonding. Optics Express, 2008, 16(15): 11513–11518

    Google Scholar 

  93. Liu J, Camacho-Aguilera R, Bessette J T, Sun X, Wang X, Cai Y, Kimerling L C, Michel J. Ge-on-Si optoelectronics. Thin Solid Films, 2012, 520(8): 3354–3360

    Google Scholar 

  94. Wang Z, Tian B, Pantouvaki M, Guo W, Absil P, Van Campenhout J, Merckling C, Van Thourhout D. Room-temperature InP distributed feedback laser array directly grown on silicon. Nature Photonics, 2015, 9(12): 837–842

    Google Scholar 

  95. Liu Y, Huang Y, Duan X. Van der Waals integration before and beyond two-dimensional materials. Nature, 2019, 567(7748): 323–333

    Google Scholar 

  96. Bae S H, Kum H, Kong W, Kim Y, Choi C, Lee B, Lin P, Park Y, Kim J. Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18 (6): 550–560

    Google Scholar 

  97. Stanford M G, Rack P D, Jariwala D. Emerging nanofabrication and quantum confinement techniques for 2D materials beyond graphene. npj 2D Materials and Applications, 2018, 2(1): 20

    Google Scholar 

  98. Sorger V J, Amin R, Khurgin J B, Ma Z, Dalir H, Khan S. Scaling vectors of attoJoule per bit modulators. Journal of Optics, 2018, 20 (1): 014012

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Key Research and Development Project of China (No. 2018YFB2201901) and in part by the National Natural Science Foundation of China (Grant No. 61805090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianji Dong.

Additional information

Yuhan Yao is currently a Ph.D. candidate in Huazhong University of Science and Technology, Wuhan, China. Her current research interests include the integration of silicon photonics and two-dimensional materials as well as RF channelization.

Zhao Cheng is currently a Ph.D. candidate in Huazhong University of Science and Technology, Wuhan, China. His current research interests include 2D materials-based photonic modulators and photodetectors as well as photonic crystal waveguide.

Jianji Dong is a Professor at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology (HUST), China. He received his Ph. D. degree of Optical Engineering from HUST in 2008. Subsequently, he worked as postdoc at Cambridge University, UK until 2010. From March 2010, he returned to HUST and was promoted to a full professor in 2013. His research interests include integrated microwave photonics, silicon photonics, and photonic computing. He has published more than 100 journal papers, including in Nature Communications, Light Science and Applications, and Physical Review Letters. He has made some special contributions to energy-efficient graphene silicon microheater, programmable temporal cloak, and complex spectrum analyzer of orbital angular momentum mode. He was honored with the Fund of Excellent Youth Scholar by the National Natural Science Foundation of China and honored with the First Award of Natural Science of Hubei Province. He is the editorial member of Scientific Reports, associate editor of IET Optoelectronics, and executive editor-in-chief of Frontier of Optoelectronics. He is an IEEE Senior Member and OSA member.

Xinliang Zhang received his Ph.D. degree in Physical Electronics from Huazhong University of Science and Technology (HUST), Wuhan, China in 2001. He is currently with Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, HUST as a Professor. He is the author or coauthor of more than 300 journal and conference papers. His current research interests include InP-based and Si-based devices and integration for optical network, high-performance computing and microwave photonics. In 2016, he was elected as an OSA Fellow.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Cheng, Z., Dong, J. et al. Performance of integrated optical switches based on 2D materials and beyond. Front. Optoelectron. 13, 129–138 (2020). https://doi.org/10.1007/s12200-020-1058-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-020-1058-3

Keywords

Navigation