Skip to main content
Log in

Antimony doped Cs2SnCl6 with bright and stable emission

  • Research Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Lead halide perovskites, with high photoluminescence efficiency and narrow-band emission, are promising materials for display and lighting. However, the lead toxicity and environmental sensitivity hinder their potential applications. Herein, a new antimony-doped lead-free inorganic perovskites variant Cs2SnCl6:xSb is designed and synthesized. The perovskite variant Cs2SnCl6:xSb exhibits a broadband orange-red emission, with a photoluminescence quantum yield (PLQY) of 37%. The photoluminescence of Cs2SnCl6:xSb is caused by the ionoluminescence of Sb3+ within Cs2SnCl6 matrix, which is verified by temperature dependent photoluminescence (PL) and PL decay measurements. In addition, the all inorganic structure renders Cs2SnCl6:xSb with excellent thermal and water stability. Finally, a white light-emitting diode (white-LED) is fabricated by assembling Cs2SnCl6:0.59%Sb, Cs2SnCl6:2.75%Bi and Ba2Sr2SiO4: Eu2+ onto the commercial UV LED chips, and the color rendering index (CRI) reaches 81.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature, 2013, 499(7458): 316–319

    Article  Google Scholar 

  2. Zhang L, Yang X, Jiang Q, Wang P, Yin Z, Zhang X, Tan H, Yang Y M, Wei M, Sutherland B R, Sargent E H, You J. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communications, 2017, 8: 15640

    Article  Google Scholar 

  3. Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N, Yoo S, Im S H, Friend R H, Lee T W. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science, 2015, 350(6265): 1222–1225

    Article  Google Scholar 

  4. Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J, Friend R H. Bright light-emitting diodes based on organometal halide perovskite. Nature Nanotechnology, 2014, 9 (9): 687–692

    Article  Google Scholar 

  5. Li X, Wu Y, Zhang S, Cai B, Gu Y, Song J, Zeng H. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials, 2016, 26(15): 2584

    Article  Google Scholar 

  6. Zhang H, Wang X, Liao Q, Xu Z, Li H, Zheng L, Fu H. Embedding perovskite nanocrystals into a polymer matrix for tunable luminescence probes in cell imaging. Advanced Functional Materials, 2017, 27(7): 1604382

    Article  Google Scholar 

  7. Ge R, Qin F, Hu L, Xiong S, Zhou Y. High fill factor over 82% enabled by a biguanide doping electron transporting layer in planar perovskite solar cells. Frontiers of Optoelectronics, 2018, 11(4): 360–366

    Article  Google Scholar 

  8. Lin K, Xing J, Quan L N, de Arquer F P G, Gong X, Lu J, Xie L, Zhao W, Zhang D, Yan C, Li W, Liu X, Lu Y, Kirman J, Sargent E H, Xiong Q, Wei Z. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 percent. Nature, 2018, 562(7726): 245–248

    Article  Google Scholar 

  9. Cao Y, Wang N, Tian H, Guo J, Wei Y, Chen H, Miao Y, Zou W, Pan K, He Y, Cao H, Ke Y, Xu M, Wang Y, Yang M, Du K, Fu Z, Kong D, Dai D, Jin Y, Li G, Li H, Peng Q, Wang J, Huang W. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562(7726): 249–253

    Article  Google Scholar 

  10. Veldhuis S A, Boix P P, Yantara N, Li M, Sum T C, Mathews N, Mhaisalkar S G. Perovskite materials for light-emitting diodes and lasers. Advanced Materials, 2016, 28(32): 6804–6834

    Article  Google Scholar 

  11. Lignos I, Stavrakis S, Nedelcu G, Protesescu L, deMello A J, Kovalenko M V. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: fast parametric space mapping. Nano Letters, 2016, 16(3): 1869–1877

    Article  Google Scholar 

  12. Song J, Li J, Xu L, Li J, Zhang F, Han B, Shan Q, Zeng H. Room-temperature triple-ligand surface engineering synergistically boosts ink stability, recombination dynamics, and charge injection toward EQE-11.6% perovskite QLEDs. Advanced Materials, 2018, 30(30): e1800764

    Article  Google Scholar 

  13. Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A, Kovalenko M V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692–3696

    Article  Google Scholar 

  14. Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B, Dong Y. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano, 2015, 9(4): 4533–4542

    Article  Google Scholar 

  15. Pan W, Wu H, Luo J, Deng Z, Ge C, Chen C, Jiang X, Yin W, Niu G, Zhu L, Yin L, Zhou Y, Xie Q, Ke X, Sui M, Tang J. Cs2AgBiBr6 single-crystal X-ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726–732

    Article  Google Scholar 

  16. Wei Y, Xiao H, Xie Z, Liang S, Liang S, Cai X, Huang S, Al Kheraif A A, Jang H S, Cheng Z, Lin J. Highly luminescent lead halide perovskite quantum dots in hierarchical CaF2 matrices with enhanced stability as phosphors for white light-emitting diodes. Advanced Optical Materials, 2018, 6(11): 1701343

    Article  Google Scholar 

  17. Huang S, Wang B, Zhang Q, Li Z, Shan A, Li L. Postsynthesis potassium-modification method to improve stability of CsPbBr3 perovskite nanocrystals. Advanced Optical Materials, 2018, 6(6): 1701106

    Article  Google Scholar 

  18. Yang S, Fu W, Zhang Z, Chen H, Li C. Recent advances in perovskite solar cells: efficiency, stability and lead-free perovskite. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2017, 5(23): 11462–11482

    Article  Google Scholar 

  19. Leng M, Chen Z, Yang Y, Li Z, Zeng K, Li K, Niu G, He Y, Zhou Q, Tang J. Lead-free, blue emitting bismuth halide perovskite quantum dots. Angewandte Chemie, 2016, 55(48): 15012–15016

    Article  Google Scholar 

  20. Zhang J, Yang Y, Deng H, Farooq U, Yang X, Khan J, Tang J, Song H. High quantum yield blue emission from lead-free inorganic antimony halide perovskite colloidal quantum dots. ACS Nano, 2017, 11(9): 9294–9302

    Article  Google Scholar 

  21. Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, Li J, Xu B, Li D, Hautzinger M P, Fu Y, Zhai T, Xu L, Niu G, Jin S, Tang J. All-inorganic bismuth-based perovskite quantum dots with bright blue photoluminescence and excellent stability. Advanced Functional Materials, 2018, 28(1): 1704446

    Article  Google Scholar 

  22. Leng M, Yang Y, Chen Z, Gao W, Zhang J, Niu G, Li D, Song H, Zhang J, Jin S, Tang J. Surface passivation of bismuth-based perovskite variant quantum dots to achieve efficient blue emission. Nano Letters, 2018, 18(9): 6076–6083

    Article  Google Scholar 

  23. Zhou C, Lin H, Tian Y, Yuan Z, Clark R, Chen B, van de Burgt L J, Wang J C, Zhou Y, Hanson K, Meisner Q J, Neu J, Besara T, Siegrist T, Lambers E, Djurovich P, Ma B. Luminescent zero-dimensional organic metal halide hybrids with near-unity quantum efficiency. Chemical Science, 2018, 9(3): 586–593

    Article  Google Scholar 

  24. Zhou C, Worku M, Neu J, Lin H, Tian Y, Lee S, Zhou Y, Han D, Chen S, Hao A, Djurovich P I, Siegrist T, Du M H, Ma B. Facile preparation of light emitting organic metal halide crystals with near-unity quantum efficiency. Chemistry of Materials, 2018, 30(7): 2374–2378

    Article  Google Scholar 

  25. Liu W, Lin Q, Li H, Wu K, Robel I, Pietryga J M, Klimov V I. Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content. Journal of the American Chemical Society, 2016, 138(45): 14954–14961

    Article  Google Scholar 

  26. Hu Q, Li Z, Tan Z, Song H, Ge C, Niu G, Han J, Tang J. Rare earth ion-doped CsPbBr3 nanocrystals. Advanced Optical Materials, 2018, 6(2): 1700864

    Article  Google Scholar 

  27. Zhou C, Tian Y, Khabou O, Worku M, Zhou Y, Hurley J, Lin H, Ma B. Manganese-doped one-dimensional organic lead bromide perovskites with bright white emissions. ACS Applied Materials & Interfaces, 2017, 9(46): 40446–40451

    Article  Google Scholar 

  28. Tan Z, Li J, Zhang C, Li Z, Hu Q, Xiao Z, Kamiya T, Hosono H, Niu G, Lifshitz E, Cheng Y, Tang J. Highly efficient blue-emitting Bi-doped Cs2SnCl6 perovskite variant: photoluminescence induced by impurity doping. Advanced Functional Materials, 2018, 28(29): 1801131

    Article  Google Scholar 

  29. Costa D, Marcus P. Electronic core levels of hydroxyls at the surface of chromia related to their XPS O 1s signature: a DFT + U study. Surface Science, 2010, 604(11–12): 932–938

    Article  Google Scholar 

  30. Hwang S M, Kim J, Kim Y, Kim Y. Na-ion storage performance of amorphous Sb2S3 nanoparticles: anode for Na-ion batteries and seawater flow batteries. Journal of Materials Chemistry A, Materials for Energy and Sustainability, 2016, 4(46): 17946–17951

    Article  Google Scholar 

  31. Yang X, Ma J, Wang H, Chai Y, Yuan R. Partially reduced Sb/Sb2O3@C spheres with enhanced electrochemical performance for lithium ion storage. Materials Chemistry and Physics, 2018, 213: 208–212

    Article  Google Scholar 

  32. Ali A, Hasanain S K, Ali T, Sultan M. Improvement of antimony sulfide photo bsorber performance by interface modification in Sb2S3-ZnO hybrid nanostructures. Physica E, Low-Dimensional Systems and Nanostructures, 2017, 87: 20–26

    Article  Google Scholar 

  33. Yang P, Deng P, Yin Z. Concentration quenching in Yb:YAG. Journal of Luminescence, 2002, 97(1): 51–54

    Article  Google Scholar 

  34. Oomen E W J L, Dirksen G J, Smit W M A, Blasse G. On the luminescence of the Sb3+ ion in Cs2NaMBr6 (M = Sc,Y,La). Journal of Physics C, Solid State Physics, 1987, 20(8): 1161–1171

    Article  Google Scholar 

  35. Oomen E W J L, Smit W M A, Blasse G. On the luminescence of Sb3+ in Cs2NaMCl6 (with M = Sc,Y,La): a model system for the study of trivalent s2 ions. Journal of Physics C, Solid State Physics, 1986, 19(17): 3263–3272

    Article  Google Scholar 

  36. Reisfeld R, Boehm L, Barnett B. Luminescence and nonradiative relaxation of Pb2+,Sn2+,Sb3+, and Bi3+ in oxide glasses. Journal of Solid State Chemistry, 1975, 15(2): 140–150

    Article  Google Scholar 

  37. Zhou G, Jiang X, Zhao J, Molokeev M, Lin Z, Liu Q, Xia Z. Two-dimensional-layered perovskite ALaTa2O7:Bi3+ (A = K and Na) phosphors with versatile structures and tunable photoluminescence. ACS Applied Materials & Interfaces, 2018, 10(29): 24648–24655

    Article  Google Scholar 

  38. Oomen E W J L, Dirksen G J. Crystal growth and luminescence of Sb3+-doped Cs2 NaMCl6 (M = Sc, Y, La). Materials Research Bulletin, 1985, 20(4): 453–457

    Article  Google Scholar 

  39. Blasse G, Grabmaier B. Luminescent Materials. Berlin: Springer, 1994

    Book  Google Scholar 

  40. Kulbak M, Gupta S, Kedem N, Levine I, Bendikov T, Hodes G, Cahen D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters, 2016, 7(1): 167–172

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51761145048, 61725401 and 51702107), the National Key R&D Program of China (No. 2016YFB0700702) and the China Postdoctoral Science Foundation (No. 2018M632843). The authors thank the Analytical and Testing Center of HUST and the facility support of the Center for Nanoscale Characterization and Devices, WNLO. The work at Tokyo Institute of Technology was conducted under the Tokodai Institute for Element Strategy (TIES) funded by the MEXT Elements Strategy Initiative to Form Core Research Center.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangda Niu or Jiang Tang.

Additional information

Jinghui Li received his B.S. degree from School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST) China in 2017. He is currently a Ph.D. candidate in Prof. Jiang Tang’s group in Wuhan National Laboratory for Optoelectronics (WNLO) at HUST. His current researches focus on luminescent perovskite materials and its application.

Zhifang Tan received his Master’s degree from Huazhong Normal University at 2010, and his Ph.D. degree in Applied Chemistry from Hiroshima University at 2014. Now he works toward Postdoctor in WNLO. His research interest includes the research and exploration of photoelectric materials, lead or lead-free perovskite materials.

Manchen Hu is a third-year undergraduate in School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST). He joined Prof. Tang’s research group in 2017. His research mainly focuses on novel materials and their applications in optoelectronic devices.

Guangda Niu is an associate professor at Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China. He is working on synthesis of metal halide perovskite semiconductors and their applications in optoelectronic devices.

Jiang Tang received his Bachelor’s degree from University of Science and Technology at 2003, and his Ph.D. degree in Material Science and Engineering from University of Toronto at 2010. He spent one year and half as a postdoctoral researcher at IBM T. J. Watson research center and then joined in Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology as a professor in 2012. His group focuses on antimony selenide (Sb2Se3) thin film solar cells, halide perovskites nanocrystals for light emitting and single crystals for X-ray detection. He has published 70 + papers including Nature, Nat. Mater., Nat. Energy and Nat. Photonics with 3500 citations. He is the receiver of the “1000 Young Talents” and the National Natural Science Funds for Distinguished Young Scholar.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tan, Z., Hu, M. et al. Antimony doped Cs2SnCl6 with bright and stable emission. Front. Optoelectron. 12, 352–364 (2019). https://doi.org/10.1007/s12200-019-0907-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-019-0907-4

Keywords

Navigation