Advertisement

Near-infrared carbon-implanted waveguides in Tb3+-doped aluminum borosilicate glasses

  • Yue Wang
  • Jiaxin Zhao
  • Qifeng Zhu
  • Jianping Shen
  • Zhongyue Wang
  • Hai-Tao Guo
  • Chunxiao LiuEmail author
Research Article
  • 2 Downloads

Abstract

Ion implantation has played a unique role in the fabrication of optical waveguide devices. Tb3+-doped aluminum borosilicate (TDAB) glass has been considered as an important magneto-optical material. In this work, near-infrared waveguides have been manufactured by the (5.5 + 6.0) MeV C3+ ion implantation with doses of (4.0 + 8.0) × 1013 ions·cm-2 in the TDAB glass. The modes propagated in the TDAB glass waveguide were recorded by a prism-coupling system. The finite-difference beam propagation method (FD-BPM) was carried out to simulate the guiding characteristics of the TDAB glass waveguide. The TDAB glass waveguide allows the light propagation with a single-mode at 1.539 μm and can serve as a potential candidate for future waveguide isolators.

Keywords

Tb3+-doped aluminum borosilicate (TDAB) glass optical waveguide ion implantation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 11405041, 51502144 and 61475189).

References

  1. 1.
    Tan Y, Ma L N, Akhmadaliev S, Zhou S Q, Chen F. Ion irradiated Er:YAG ceramic cladding waveguide amplifier in C and L bands. Optical Materials Express, 2016, 6(3): 711–716CrossRefGoogle Scholar
  2. 2.
    Ríos C, Stegmaier M, Hosseini P, Wang D, Scherer T, Wright C D, Bhaskaran H, Pernice W H P. Integrated all-photonic non-volatile multi-level memory. Nature Photonics, 2015, 9(11): 725–732CrossRefGoogle Scholar
  3. 3.
    Wang C, Zhang M, Chen X, Bertrand M, Shams-Ansari A, Chandrasekhar S, Winzer P, Lončar M. Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages. Nature, 2018, 562(7725): 101–104CrossRefGoogle Scholar
  4. 4.
    Hu H, Ricken R, Sohler W. Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium. Applied Physics B, Lasers and Optics, 2010, 98(4): 677–679CrossRefGoogle Scholar
  5. 5.
    Yang X F, Zhang Z B, Wong W H, Yu D Y, Pun E Y B, Zhang D L. Refractive index change in Ti-diffused near-stoichiometric LiTaO3 waveguide and its relation to Ti-concentration. Materials Chemistry and Physics, 2018, 203: 340–345CrossRefGoogle Scholar
  6. 6.
    Ma L N, Tan Y, Ghorbani-Asl M, Boettger R, Kretschmer S, Zhou S, Huang Z, Krasheninnikov A V, Chen F. Tailoring the optical properties of atomically-thin WS2 via ion irradiation. Nanoscale, 2017, 9: 11027–11034CrossRefGoogle Scholar
  7. 7.
    Meriche F, Touam T, Chelouche A, Dehimi M, Solard J, Fischer A, Boudrioua A, Peng L H. Post-annealing effects on the physical and optical waveguiding properties of RF sputtered ZnO thin films. Electronic Materials Letters, 2015, 11(5): 862–870CrossRefGoogle Scholar
  8. 8.
    Wang Y N, Luo Y, Sun C Z, Xiong B, Wang J, Hao Z B, Han Y J, Wang L, Li H T. Laser annealing of SiO2 film deposited by ICPECVD for fabrication of silicon based low loss waveguide. Frontiers of Optoelectronics, 2016, 9(2): 323–329CrossRefGoogle Scholar
  9. 9.
    Chen F. Micro- and submicrometric waveguiding structures in optical crystals produced by ion beams for photonic applications. Laser & Photonics Reviews, 2012, 6(5): 622–640CrossRefGoogle Scholar
  10. 10.
    Jaque D, Chen F. High resolution fluorescence imaging of damage regions in H+ ion implanted Nd:MgO:LiNbO3 channel waveguides. Applied Physics Letters, 2009, 94(1): 011109CrossRefGoogle Scholar
  11. 11.
    Zhao J H, Zhang L, Wang X L. Waveguide and Raman spectro-scopic visualization in C-implanted Ca0.20Ba0.80Nb2O6 crystal. Optical Materials Express, 2014, 4(4): 864–869CrossRefGoogle Scholar
  12. 12.
    Wang L, Haunhorst C E, Volk M F, Chen F, Kip D. Quasi-phase-matched frequency conversion in ridge waveguides fabricated by ion implantation and diamond dicing of MgO:LiNbO3 crystals. Optics Express, 2015, 23(23): 30188–30194CrossRefGoogle Scholar
  13. 13.
    Bányász I, Zolnai Z, Fried M, Berneschi S, Pelli S, Nunzi-Conti G. Leaky mode suppression in planar optical waveguides written in Er: TeO2-WO3 glass and CaF2 crystal via double energy implantation with MeV N+ ions. Nuclear Instruments and Methods in Physical Research Section B, 2014, 326: 81–85CrossRefGoogle Scholar
  14. 14.
    Vázquez G V, Valiente R, Gómez-Salces S, Flores-Romero E, Rickards J, Trejo-Luna R. Carbon implanted waveguides in soda lime glass doped with Yb3+ and Er3+ for visible light emission. Optics & Laser Technology, 2016, 79: 132–136CrossRefGoogle Scholar
  15. 15.
    Bai M Y, Zhao Y L, Jiao B B, Zhu L J, Zhang G D, Wang L. Research on ion implantation in MEMS device fabrication by theory, simulation and experiments. International Journal of Modern Physics B, 2018, 32(14): 1850170CrossRefGoogle Scholar
  16. 16.
    Shen X L, Zhu Q F, Zheng R L, Lv P, Guo H T, Liu C X. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation. Results in Physics, 2018, 8: 352–356CrossRefGoogle Scholar
  17. 17.
    Li W N, Zou K S, Lu M, Peng B, Zhao W. Faraday glasses with a large size and high performance. International Journal of Applied Ceramic Technology, 2010, 7(3): 369–374CrossRefGoogle Scholar
  18. 18.
    Stadler B J H, Mizumoto T. Integrated magneto-optical materials and isolators: a review. IEEE Photonics Journal, 2014, 6(1): 1–15CrossRefGoogle Scholar
  19. 19.
    Srinivasan K, Stadler B J H. Magneto-optical materials and designs for integrated TE- and TM-mode planar waveguide isolators: a review. Optical Materials Express, 2018, 8(11): 3307–3318CrossRefGoogle Scholar
  20. 20.
    Liu C X, Fu L L, Zhang L L, Guo H T, Li W N, Lin S B, Wei W. Carbon-implanted monomode waveguides in magneto-optical glasses for waveguide isolators. Applied Physics A, Materials Science & Processing, 2016, 122(2): 94CrossRefGoogle Scholar
  21. 21.
    Bradley J D B, Pollnau M. Erbium-doped integrated waveguide amplifiers and lasers. Laser & Photonics Reviews, 2011, 5(3): 368–403CrossRefGoogle Scholar
  22. 22.
    Ziegler J F. SRIM-The Stopping and Range of Ions in MatterGoogle Scholar
  23. 23.
    Cui X J, Wang L L, Zhang H K, Chen T. KTiOPO4 double barrier optical waveguides produced by Rb+-K+ ion exchange and subsequent He+-ion irradiation. Optical Engineering (Redondo Beach, Calif.), 2016, 55(3): 036107Google Scholar
  24. 24.
    Wang Y, Shen X L, Zheng R L, Lv P, Liu C X, Guo H T. Optical planar waveguides fabricated by using carbon ion implantation in terbium gallium garnet. Journal of the Korean Physical Society, 2018, 72(7): 765–769CrossRefGoogle Scholar
  25. 25.
    Rsoft Design Group. Computer software BeamPROP version 8.0Google Scholar
  26. 26.
    Tan Y, de Aldana J R V, Chen F. Femtosecond laser-written lithium niobate waveguide laser operating at 1085 nm. Optical Engineering (Redondo Beach, Calif.), 2014, 53(10): 107109Google Scholar
  27. 27.
    Liu C X, Fu L L, Cheng L L, Zhu X F, Lin S B, Zheng R L, Zhou Z G, Guo H T, Li W N, Wei W. Optimization effect of annealing treatment on oxygen-implanted Nd:CNGG waveguides. Modern Physics Letters B, 2016, 30(20): 1650261CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Yue Wang
    • 1
  • Jiaxin Zhao
    • 1
  • Qifeng Zhu
    • 1
  • Jianping Shen
    • 1
  • Zhongyue Wang
    • 1
  • Hai-Tao Guo
    • 2
  • Chunxiao Liu
    • 1
    Email author
  1. 1.College of Electronic and Optical EngineeringNanjing University of Post and TelecommunicationsNanjingChina
  2. 2.State Key Laboratory of Transient Optics and PhotonicsXi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences (CAS)Xi’anChina

Personalised recommendations