Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas

Abstract

The past two decades have seen an exponential growth of interest in one of the least explored region of the electromagnetic spectrum, the terahertz (THz) frequency band, ranging from to 0.1 to 10 THz. Once only the realm of astrophysicists studying the background radiation of the universe, THz waves have become little by little relevant in the most diverse fields, such as medical imaging, industrial inspection, remote sensing, fundamental science, and so on. Remarkably, THz wave radiation can be generated and detected by using ambient air as the source and the sensor. This is accomplished by creating plasma under the illumination of intense femtosecond laser fields. The integration of such a plasma source and sensor in THz time-domain techniques allows spectral measurements covering the whole THz gap (0.1 to 10 THz), further increasing the impact of this scientific tool in the study of the four states of matter.

In this review, the authors introduce a new paradigm for implementing THz plasma techniques. Specifically, we replaced the use of elongated plasmas, ranging from few mm to several cm, with sub-mm plasmas, which will be referred to as microplasmas, obtained by focusing ultrafast laser pulses with high numerical aperture optics (NA from 0.1 to 0.9).

The experimental study of the THz emission and detection from laser-induced plasmas of submillimeter size are presented. Regarding the microplasma source, one of the interesting phenomena is that the main direction of THz wave emission is almost orthogonal to the laser propagation direction, unlike that of elongated plasmas. Perhaps the most important achievement is the demonstration that laser pulse energies lower than 1 mJ are sufficient to generate measurable THz pulses from ambient air, thus reducing the required laser energy requirement of two orders of magnitude compared to the state of art. This significant decrease in the required laser energy will make plasma-based THz techniques more accessible to the scientific community, as well as opening new potential industrial applications.

Finally, experimental observations of THz radiation detection with microplasmas are also presented. As fully coherent detection was not achieved in this work, the results presented herein are to be considered a first step to understand the peculiarities involved in using the microplasma as a THz sensor.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358

    Google Scholar 

  2. 2.

    Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130

    Google Scholar 

  3. 3.

    Kolner B H, Buckles R A, Conklin P M, Scott R P. Plasma characterization with terahertz pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 505–512

    Google Scholar 

  4. 4.

    Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166

    Google Scholar 

  5. 5.

    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586

    Google Scholar 

  6. 6.

    McIntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S. Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chemical Society Reviews, 2012, 41(6): 2072–2082

    Google Scholar 

  7. 7.

    Kübler C, Ehrke H, Huber R, Lopez R, Halabica A, Haglund R F Jr, Leitenstorfer A. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Physical Review Letters, 2007, 99(11): 116401

    Google Scholar 

  8. 8.

    Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R. Wideband terahertz spectroscopy of explosives. Chemical Physics Letters, 2007, 434(4-6): 227–230

    Google Scholar 

  9. 9.

    Davies A G, Burnett A D, Fan W, Linfield E H, Cunningham J E. Terahertz spectroscopy of explosives and drugs. Materials Today, 2008, 11(3): 18–26

    Google Scholar 

  10. 10.

    Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903

    Google Scholar 

  11. 11.

    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire ‘terahertz gap’. Applied Physics Letters, 2008, 92(1): 011131

    Google Scholar 

  12. 12.

    Liu J, Zhang X C. Birefringence and absorption coefficients of alpha barium borate in terahertz range. Journal of Applied Physics, 2009, 106(2): 023107

    Google Scholar 

  13. 13.

    Zalkovskij M, Zoffmann Bisgaard C, Novitsky A, Malureanu R, Savastru D, Popescu A, Uhd Jepsen P, Lavrinenko A V. Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Applied Physics Letters, 2012, 100(3): 031901

    Google Scholar 

  14. 14.

    D’Angelo F, Mics Z, Bonn M, Turchinovich D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Optics Express, 2014, 22(10): 12475–12485

    Google Scholar 

  15. 15.

    McLaughlin C V, Hayden L M, Polishak B, Huang S, Luo J, Kim T D, Jen A K Y. Wideband 15 THz response using organic electrooptic polymer emitter-sensor pairs at telecommunication wavelengths. Applied Physics Letters, 2008, 92(15): 151107

    Google Scholar 

  16. 16.

    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10(7): 483–488

    Google Scholar 

  17. 17.

    Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1-2): 50–58

    Google Scholar 

  18. 18.

    Chen Y, Yamaguchi M, Wang M, Zhang X C. Terahertz pulse generation from noble gases. Applied Physics Letters, 2007, 91 (25): 251116

    Google Scholar 

  19. 19.

    Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93 (26): 261106

    Google Scholar 

  20. 20.

    Kress M, Löffler T, Eden S, Thomson M, Roskos H G. Terahertzpulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122

    Google Scholar 

  21. 21.

    Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005

    Google Scholar 

  22. 22.

    Leisawitz D T, Danchi W C, DiPirro M J, Feinberg L D, Gezari D Y, Hagopian M, Langer W D, Mather J C, Moseley S H, Shao M, Silverberg R F, Staguhn J G, Swain M R, Yorke H W, Zhang X L. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments. Munich, Germany: SPIE, 2000, 36–46

    Google Scholar 

  23. 23.

    Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33

    Google Scholar 

  24. 24.

    Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928

    Google Scholar 

  25. 25.

    Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105

    Google Scholar 

  26. 26.

    Kimmitt M F. Restrahlen to T-rays -100 years of terahertz radiation. Journal of Biological Physics, 2003, 29(2–3): 77–85

    Google Scholar 

  27. 27.

    Siegel P H. Terahertz pioneer: David H. Auston. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 6–8

    Google Scholar 

  28. 28.

    Siegel P H. Terahertz pioneer: Maurice F. Kimmitt ‘A Person Who Makes ThingsWork’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(1): 6–9

    Google Scholar 

  29. 29.

    Siegel P H. Terahertz pioneer: Thomas G. Phillips ‘The Sky Above, the Mountain Below’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(5): 478–484

    Google Scholar 

  30. 30.

    Siegel P H. Terahertz pioneer: Frank C. De Lucia ‘The Numbers Count’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(6): 578–583

    Google Scholar 

  31. 31.

    Siegel P H. Terahertz pioneer: Richard J. Saykally -water, water everywhere..... IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 266–270

    Google Scholar 

  32. 32.

    Siegel P H. Terahertz pioneer: RobertW.Wilson the foundations of THz radio science. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 162–166

    Google Scholar 

  33. 33.

    Siegel P H. Terahertz pioneer: Daniel R. Grischkowsky ‘We Search for Truth and Beauty’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(4): 378–382

    Google Scholar 

  34. 34.

    Siegel P H. Terahertz pioneers: Manfred Winnewisser and Brenda PrudenWinnewisser: ‘Equating Hamiltonians to nature’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(3): 229–236

    Google Scholar 

  35. 35.

    Siegel P H. Terahertz pioneer: Sir John B. Pendry ‘Theoretical Physics for a Practical World’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 693–701

    Google Scholar 

  36. 36.

    Siegel P H. Terahertz pioneer: Philippe Goy “If You Agree with the Majority, You Might be Wrong”. IEEE Transactions on Terahertz Science and Technology, 2013, 3(4): 348–353

    Google Scholar 

  37. 37.

    Siegel P H. Terahertz pioneer: Federico Capasso “Physics by Design: Engineering Our Way Out of the THz Gap”. IEEE Transactions on Terahertz Science and Technology, 2013, 3(1): 6–13

    Google Scholar 

  38. 38.

    Siegel P H. Terahertz pioneer: Fritz Keilmann-‘RF Biophysics: From strong field to near field’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 506–514

    Google Scholar 

  39. 39.

    Siegel P H. Terahertz pioneer: Koji Mizuno ‘50 Years in Submillimeter-Waves: From Otaku to Sensei’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(2): 130–133

    Google Scholar 

  40. 40.

    Siegel P H. Terahertz pioneer: Erik L. Kollberg ‘Instrument Maker to the Stars’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(5): 538–544

    Google Scholar 

  41. 41.

    Siegel P H. Terahertz pioneer: Michael Bass ‘The THz Light at the End of the Tunnel’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 410–417

    Google Scholar 

  42. 42.

    Siegel P H. Terahertz pioneer: Shenggang Liu ‘China’s Father of Vacuum and Microwave Electronics’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(1): 6–11

    Google Scholar 

  43. 43.

    Siegel P H. Terahertz pioneer: Mattheus (Thijs) de Graauw ‘Intention, Attention, Execution’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(2): 138–146

    Google Scholar 

  44. 44.

    Siegel P H. Terahertz pioneer: Robert J. Mattauch “Two Terminals Will Suffice”. IEEE Transactions on Terahertz Science and Technology, 2014, 4(6): 646–652

    Google Scholar 

  45. 45.

    Siegel P H. Terahertz pioneer: Tatsuo Itoh ‘Transmission Lines and Antennas: Left and Right’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(3): 298–306

    Google Scholar 

  46. 46.

    Siegel P H. Terahertz pioneer: Xi-Cheng Zhang ‘The Face of THz’. IEEE Transactions on Terahertz Science and Technology, 2015, 5 (5): 706–714

    Google Scholar 

  47. 47.

    Phillips T G, Keene J. Submillimeter astronomy (heterodyne spectroscopy). Proceedings of the IEEE, 1992, 80(11): 1662–1678

    Google Scholar 

  48. 48.

    Siegel P H, Pikov V. Impact of low intensity millimetre waves on cell functions. Electronics Letters, 2010, 46(26): S70

    Google Scholar 

  49. 49.

    Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K O. DNA breathing dynamics in the presence of a terahertz field. Physics Letters A, 2010, 374(10): 1214–1217

    MATH  Google Scholar 

  50. 50.

    Yang Y, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264–273

    Google Scholar 

  51. 51.

    Svelto O, Hanna D C. Principles of Lasers. Boston, MA: Springer, 2009

    Google Scholar 

  52. 52.

    Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H, Lindenberg A. Intense terahertz pulses from SLAC electron beams using coherent transition radiation. Review of Scientific Instruments, 2013, 84(2): 022701

    Google Scholar 

  53. 53.

    Elias L R, Hu J, Ramian G. The UCSB electrostatic accelerator free electron laser: first operation. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 237(1-2): 203–206

    Google Scholar 

  54. 54.

    Reimann K. Table-top sources of ultrashort THz pulses. Reports on Progress in Physics, 2007, 70(10): 1597–1632

    Google Scholar 

  55. 55.

    Kitaeva G K. Terahertz generation by means of optical lasers. Laser Physics Letters, 2008, 5(8): 559–576

    Google Scholar 

  56. 56.

    Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America. B, Optical Physics, 2008, 25(7): B6

    Google Scholar 

  57. 57.

    Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M. Terahertz optical rectification from <110>zinc-blende crystals. Applied Physics Letters, 1994, 64(11): 1324–1326

    Google Scholar 

  58. 58.

    Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559

    Google Scholar 

  59. 59.

    Shalaby M, Hauri C P. Demonstration of a low-frequency threedimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976

    Google Scholar 

  60. 60.

    Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106

    Google Scholar 

  61. 61.

    Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103

    Google Scholar 

  62. 62.

    Mourou G, Stancampiano C V, Antonetti A, Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Applied Physics Letters, 1981, 39(4): 295–296

    Google Scholar 

  63. 63.

    Budiarto E, Margolies J, Jeong S, Son J, Bokor J. High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics, 1996, 32(10): 1839–1846

    Google Scholar 

  64. 64.

    Look D C. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 1993, 231(1-2): 61–73

    Google Scholar 

  65. 65.

    Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923

    Google Scholar 

  66. 66.

    Richards P L. Bolometers for infrared and millimeter waves. Journal of Applied Physics, 1994, 76(1): 1–24

    Google Scholar 

  67. 67.

    Mauskopf P D, Bock J J, Del Castillo H, Holzapfel W L, Lange A E. Composite infrared bolometers with Si3N4 micromesh absorbers. Applied Optics, 1997, 36(4): 765–771

    Google Scholar 

  68. 68.

    Nahum M, Martinis J M. Ultrasensitive-hot-electron microbolometer. Applied Physics Letters, 1993, 63(22): 3075–3077

    Google Scholar 

  69. 69.

    Golay M J E. A pneumatic infra-red detector. Review of Scientific Instruments, 1947, 18(5): 357–362

    Google Scholar 

  70. 70.

    Gautschi G. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers. Berlin, Heidelberg: Springer, 2002

    Google Scholar 

  71. 71.

    Komiyama S, Astafiev O, Antonov V, Kutsuwa T, Hirai H. A single-photon detector in the far-infrared range. Nature, 2000, 403 (6768): 405–407

    Google Scholar 

  72. 72.

    Kim K T, Zhang C, Shiner A D, Schmidt B E, Légaré F, Villeneuve D M, Corkum P B. Petahertz optical oscilloscope. Nature Photonics, 2013, 7(12): 958–962

    Google Scholar 

  73. 73.

    Teo S M, Ofori-Okai B K, Werley C A, Nelson K A. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Review of Scientific Instruments, 2015, 86(5): 051301

    Google Scholar 

  74. 74.

    Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525

    Google Scholar 

  75. 75.

    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Applied Physics Letters, 1999, 74(11): 1516–1518

    Google Scholar 

  76. 76.

    Auston D H, Smith P R. Generation and detection of millimeter waves by picosecond photoconductivity. Applied Physics Letters, 1983, 43(7): 631–633

    Google Scholar 

  77. 77.

    Grischkowsky D, Keiding S, van Exter M, Fattinger C. Farinfrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America. B, Optical Physics, 1990, 7(10): 2006

    Google Scholar 

  78. 78.

    Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams. Applied Physics Letters, 1996, 69(8): 1026–1028

    Google Scholar 

  79. 79.

    Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 679–692

    Google Scholar 

  80. 80.

    Mittleman D M, Hunsche S, Boivin L, Nuss M C. T-ray tomography. Optics Letters, 1997, 22(12): 904–906

    Google Scholar 

  81. 81.

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology, 2002, 47(21): 3853–3863

    Google Scholar 

  82. 82.

    Seco-Martorell C, López-Domínguez V, Arauz-Garofalo G, Redo-Sanchez A, Palacios J, Tejada J. Goya’s artwork imaging with Terahertz waves. Optics Express, 2013, 21(15): 17800–17805

    Google Scholar 

  83. 83.

    Zhong H, Xu J Z, Xie X, Yuan T, Reightler R, Madaras E, Zhang X C. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sensors Journal, 2005, 5(2): 203–208

    Google Scholar 

  84. 84.

    Beard M C, Turner G M, Schmuttenmaer C A. Terahertz Spectroscopy. Journal of Physical Chemistry B, 2002, 106(29): 7146–7159

    Google Scholar 

  85. 85.

    Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769

    Google Scholar 

  86. 86.

    Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7(9): 680–690

    Google Scholar 

  87. 87.

    Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W, Huber R. Subcycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, 8(2): 119–123

    Google Scholar 

  88. 88.

    Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728

    Google Scholar 

  89. 89.

    Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455

    Google Scholar 

  90. 90.

    Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212

    Google Scholar 

  91. 91.

    Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103 (23): 235002

    Google Scholar 

  92. 92.

    Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546

    Google Scholar 

  93. 93.

    Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677

    Google Scholar 

  94. 94.

    Durand M, Houard A, Prade B, Mysyrowicz A, Durécu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K, Schmitt R, Théberge F, Chateauneuf M, Daigle J F, Dubois J. Kilometer range filamentation. Optics Express, 2013, 21(22): 26836–26845

    Google Scholar 

  95. 95.

    D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Physical Review Letters, 2007, 98(23): 235002

    Google Scholar 

  96. 96.

    Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Physical Review Letters, 2008, 100 (25): 255006

    Google Scholar 

  97. 97.

    Liu Y, Houard A, Prade B, Mysyrowicz A, Diaw A, Tikhonchuk V T. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Applied Physics Letters, 2008, 93(5): 051108

    Google Scholar 

  98. 98.

    Mitryukovskiy S I, Liu Y, Prade B, Houard A, Mysyrowicz A. Coherent synthesis of terahertz radiation from femtosecond laser filaments in air. Applied Physics Letters, 2013, 102(22): 221107

    Google Scholar 

  99. 99.

    Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584

    Google Scholar 

  100. 100.

    Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001

    Google Scholar 

  101. 101.

    Bergé L, Skupin S, Köhler C, Babushkin I, Herrmann J. 3D numerical simulations of THz generation by two-color laser filaments. Physical Review Letters, 2013, 110(7): 073901

    Google Scholar 

  102. 102.

    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguère M, Lotti A, Couairon A, Légaré F, Ozaki T, Faccio D, Morandotti R. Wavelength scaling of terahertz generation by gas ionization. Physical Review Letters, 2013, 110(25): 253901

    Google Scholar 

  103. 103.

    Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103

    Google Scholar 

  104. 104.

    Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182

    Google Scholar 

  105. 105.

    Dai J, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117

    Google Scholar 

  106. 106.

    Wen H, Lindenberg A M. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902

    Google Scholar 

  107. 107.

    Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001

    Google Scholar 

  108. 108.

    Zhong H, Karpowicz N, Zhang X C. Terahertz emission profile from laser-induced air plasma. Applied Physics Letters, 2006, 88 (26): 261103

    Google Scholar 

  109. 109.

    Klarskov P, Strikwerda A C, Iwaszczuk K, Jepsen P U. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma. New Journal of Physics, 2013, 15(7): 075012

    Google Scholar 

  110. 110.

    Blank V, Thomson M D, Roskos H G. Spatio-spectral characteristics of ultra-broadband THz emission from two-colourphotoexcited gas plasmas and their impact for nonlinear spectroscopy. New Journal of Physics, 2013, 15(7): 075023

    Google Scholar 

  111. 111.

    You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Physical Review Letters, 2012, 109(18): 183902

    Google Scholar 

  112. 112.

    Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S. Physics of the conical broadband terahertz emission from twocolor laser-induced plasma filaments. Physical Review A., 2014, 89(3): 033838

    Google Scholar 

  113. 113.

    Wang T J, Yuan S, Chen Y, Daigle J F, Marceau C, Théberge F, Châteauneuf M, Dubois J, Chin S L. Toward remote high energy terahertz generation. Applied Physics Letters, 2010, 97(11): 111108

    Google Scholar 

  114. 114.

    Wang T J, Daigle J F, Yuan S, Théberge F, Châteauneuf M, Dubois J, Roy G, Zeng H, Chin S L. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air. Physical Review A., 2011, 83(5): 053801

    Google Scholar 

  115. 115.

    Nahata A, Heinz T F. Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. Optics Letters, 1998, 23(1): 67–69

    Google Scholar 

  116. 116.

    Liu J, Zhang X C. Enhancement of laser-induced fluorescence by intense terahertz pulses in gases. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 229–236

    Google Scholar 

  117. 117.

    Liu J, Dai J, Zhang X C. Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission. Journal of the Optical Society of America B, Optical Physics, 2011, 28(4): 796

    Google Scholar 

  118. 118.

    Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631

    Google Scholar 

  119. 119.

    Clough B, Liu J, Zhang X C. “All air-plasma” terahertz spectroscopy. Optics Letters, 2011, 36(13): 2399–2401

    Google Scholar 

  120. 120.

    Maker P D, Terhune R W, Savage C M. Optical third harmonic generation. In: Proceedings of the 3rd International Congress, Quantum Electron. Paris: Dunod Éditeur, 1964, 1559

    Google Scholar 

  121. 121.

    Talebpour A, Yang J, Chin S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse. Optics Communications, 1999, 163(1-3): 29–32

    Google Scholar 

  122. 122.

    Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports, 2007, 441(2-4): 47–189

    Google Scholar 

  123. 123.

    Chin S L. Femtosecond Laser Filamentation. New York: Springer, 2010

    Google Scholar 

  124. 124.

    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S. Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments. Optics Express, 2011, 19(18): 16866–16871

    Google Scholar 

  125. 125.

    Arévalo E, Becker A. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas. Physical Review A., 2005, 72(4): 043807

    Google Scholar 

  126. 126.

    Talebpour A, Petit S, Chin S. Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air. Optics Communications, 1999, 171(4-6): 285–290

    Google Scholar 

  127. 127.

    Bukin V V, Vorob’ev N S, Garnov S V, Konov V I, Lozovoi V I, Malyutin A A, Shchelev M Y, Yatskovskii I S. Formation and development dynamics of femtosecond laser microplasma in gases. Quantum Electronics, 2006, 36(7): 638–645

    Google Scholar 

  128. 128.

    Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Pépin H, Kieffer J C, Mercure H P. Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air. Applied Spectroscopy, 2002, 56 (11): 1444–1452

    Google Scholar 

  129. 129.

    Herzberg G. Molecular Spectra and Molecular Structure. Malabar, FL: R.E. Krieger Pub. Co, 1989

    Google Scholar 

  130. 130.

    Becker A, Bandrauk A D, Chin S L. S-matrix analysis of nonresonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule. Chemical Physics Letters, 2001, 343(3-4): 345–350

    Google Scholar 

  131. 131.

    Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chemical Physics, 2009, 360(1-3): 171–175

    Google Scholar 

  132. 132.

    Vidal F, Comtois D, Chien C Y, Desparois A, La Fontaine B, Johnston T W, Kieffer J C, Mercure H P, Pepin H, Rizk F A. Modeling the triggering of streamers in air by ultrashort laser pulses. IEEE Transactions on Plasma Science, 2000, 28(2): 418–433

    Google Scholar 

  133. 133.

    Sato M, Higuchi T, Kanda N, Konishi K, Yoshioka K, Suzuki T, Misawa K, Kuwata-Gonokami M. Terahertz polarization pulse shaping with arbitrary field control. Nature Photonics, 2013, 7(9): 724–731

    Google Scholar 

  134. 134.

    Amico C D, Houard A, Akturk S, Liu Y, Le Bloas J, Franco M, Prade B, Couairon A, Tikhonchuk V T, Mysyrowicz A. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New Journal of Physics, 2008, 10(1): 013015

    Google Scholar 

Download references

Acknowledgements

This research was sponsored by the National Science Foundation (ECCS-1229968) and the Army Research Office under Grants No. US ARMY W911NF-14-1-0343 and W911NF-17-1-0428. Part of the research in Zhejiang University (ZJU) was supported by the National Natural Science Foundation of China (Grant No. 61473255).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xi-Cheng Zhang.

Additional information

Invited Paper

Fabrizio Buccheri graduated from University of Palermo with a Bachelor of Engineering and a Master of Engineering in Electronics Engineering in November 2007 and November 2010 respectively, both with full marks and honor. His undergraduate thesis project with the title “Optical Biosensor based on Surface Plasmon Resonance for Wine Quality Control” won the first prize as best undergraduate project at the regional level. In 2010, Fabrizio was awarded a research internship from the Institut National de la Recherche Scientifique in Varennes, Canada, under the supervision of Prof. R. Morandotti. In Canada, Fabrizio developed his experimental master thesis project with the title “Terahertz Time Domain Spectroscopy with Subwavelength Spatial Resolution.” In 2011, Fabrizio is awarded a Fulbright scholarship to support the pursuit of his PhD degree in the United States. He joined Prof. X.-C. Zhang’s research group in Rensselaer Polytechnic Institute and then followed him to University of Rochester, The Institute of Optics. In 2016, he was awarded the Best Graduate Student Project from The Institute of Optics by Rochester Precision Optics. Fabrizio is an active member of the professional associations OSA and SPIE.

Fabrizio currently works for Prysmian Group designing the next generation monitoring systems for the energy industry.

Pingjie Huang is an associate professor in the State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University (ZJU). He received his Ph.D. degree in mechanical engineering, with specialty in information sensing and instrumentation from Zhejiang University in 2004 and obtained his B.Sc. and M.Sc. degrees from Huazhong Agricultural University in 1996 and Xi’an University of Technology in 1999, respectively. His research interests mainly focus on advanced transducer and measurement, process and environmental information processing and event detection, and computer control system design and development, etc. He is a key member of the research group in Zhejiang University for early warning techniques and systems for urban water quality assurance, NDT&amp;E of conductive structures, food products, water samples, and bio-tissue etc. base on THz-TDS, UV-Vis, and ECT methods. In these five years, he has authored/co-authored more than 40 peer-reviewed papers and conference papers.

Supported by the CSC and starting from September 2017 for a period of one year, Pingjie Huang is a visiting scholar in Prof. Xi- Cheng Zhang’s research group in The Institute of Optics, University of Rochester working on terahertz science and technology.

Xi-Cheng Zhang, Parker Givens Chair of Optics, was Director of The Institute of Optics, University of Rochester (UR), NY, a foremost institution in optics and optical physics research and education (Jan. 2012–Jun. 2017). Prior to joining UR, he pioneered world-leading research in the field of ultrafast laser-based terahertz technology and optical physics at Rensselaer Polytechnic Institute (RPI), Troy NY (‘92-‘12). At RPI, he is the Eric Jonsson Professor of Science; Acting Head at the Department of Physics, Applied Physics &amp; Astronomy; Professor of Electrical, Computer &amp; System; and Founding Director of the Center for THz Research. He is co-founder of Zomega Terahertz Corp. With a B.S. degree (‘82) from Peking University, he earned the M.S. (‘83) and Ph.D. (‘86) degrees in Physics from Brown University, RI.

Dr. Zhang served as Editor-in-Chief of Optics Letters, OSA (‘14- ‘19). He is a Fellow of AAAS, APS, IEEE, OSA, and SPIE. Previous positions included visiting scientist at MIT (‘85), Physical Tech. Division of Amoco Research Center (‘87), EE Dept. at Columbia University (‘87-‘91); Distinguished Visiting Scientist at Jet Propulsion Laboratory, Caltech (2006). He holds 29 US patents, and is a prolific author and speaker.

His honors and awards include: Humboldt Prize ‘18); Australian Academy of Science Selby Fellow (‘17); IRMMW-THz Kenneth Button Prize (‘14); OSA William F. Meggers Award (‘12); IEEE Photonics Society William Streifer Scientific Achievement Award (‘11); RensselaerWilliam H.Wiley 1866 Award (‘09); Japan Society for the Promotion of Science Fellowship &amp; NRC-CIAR Distinguished Visiting Scientist, Canada (‘04); First Heinrich Rudolf Hertz Lecturer, RWTH, Aachen, Germany (‘03). He also served two years as a Distinguished Lecturer of IEEE/LEOS. He received Rensselaer Early Career Award (‘96), Research Corporation Cottrell Scholar Award (‘95), NSF Early Career Award (‘95), K.C. Wong Prize, K.C. Wong Foundation, Hong Kong (‘95), NSF Research Initiation Award (‘92). In ‘93-‘94, he was an AFOSR-SRPF Fellow at Hanscom Air Force Base.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buccheri, F., Huang, P. & Zhang, X. Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas. Front. Optoelectron. 11, 209–244 (2018). https://doi.org/10.1007/s12200-018-0819-8

Download citation

Keywords

  • terahertz waves
  • Terahertz Air Photonics
  • generation and detection
  • elongated plasmas
  • microplasmas