Frontiers of Optoelectronics

, Volume 11, Issue 3, pp 209–244 | Cite as

Generation and detection of pulsed terahertz waves in gas: from elongated plasmas to microplasmas

  • Fabrizio Buccheri
  • Pingjie Huang
  • Xi-Cheng ZhangEmail author
Review Article


The past two decades have seen an exponential growth of interest in one of the least explored region of the electromagnetic spectrum, the terahertz (THz) frequency band, ranging from to 0.1 to 10 THz. Once only the realm of astrophysicists studying the background radiation of the universe, THz waves have become little by little relevant in the most diverse fields, such as medical imaging, industrial inspection, remote sensing, fundamental science, and so on. Remarkably, THz wave radiation can be generated and detected by using ambient air as the source and the sensor. This is accomplished by creating plasma under the illumination of intense femtosecond laser fields. The integration of such a plasma source and sensor in THz time-domain techniques allows spectral measurements covering the whole THz gap (0.1 to 10 THz), further increasing the impact of this scientific tool in the study of the four states of matter.

In this review, the authors introduce a new paradigm for implementing THz plasma techniques. Specifically, we replaced the use of elongated plasmas, ranging from few mm to several cm, with sub-mm plasmas, which will be referred to as microplasmas, obtained by focusing ultrafast laser pulses with high numerical aperture optics (NA from 0.1 to 0.9).

The experimental study of the THz emission and detection from laser-induced plasmas of submillimeter size are presented. Regarding the microplasma source, one of the interesting phenomena is that the main direction of THz wave emission is almost orthogonal to the laser propagation direction, unlike that of elongated plasmas. Perhaps the most important achievement is the demonstration that laser pulse energies lower than 1 mJ are sufficient to generate measurable THz pulses from ambient air, thus reducing the required laser energy requirement of two orders of magnitude compared to the state of art. This significant decrease in the required laser energy will make plasma-based THz techniques more accessible to the scientific community, as well as opening new potential industrial applications.

Finally, experimental observations of THz radiation detection with microplasmas are also presented. As fully coherent detection was not achieved in this work, the results presented herein are to be considered a first step to understand the peculiarities involved in using the microplasma as a THz sensor.


terahertz waves Terahertz Air Photonics generation and detection elongated plasmas microplasmas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was sponsored by the National Science Foundation (ECCS-1229968) and the Army Research Office under Grants No. US ARMY W911NF-14-1-0343 and W911NF-17-1-0428. Part of the research in Zhejiang University (ZJU) was supported by the National Natural Science Foundation of China (Grant No. 61473255).


  1. 1.
    Nuss M C, Auston D H, Capasso F. Direct subpicosecond measurement of carrier mobility of photoexcited electrons in gallium arsenide. Physical Review Letters, 1987, 58(22): 2355–2358Google Scholar
  2. 2.
    Exter M, Fattinger C, Grischkowsky D. Terahertz time-domain spectroscopy of water vapor. Optics Letters, 1989, 14(20): 1128–1130Google Scholar
  3. 3.
    Kolner B H, Buckles R A, Conklin P M, Scott R P. Plasma characterization with terahertz pulses. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 505–512Google Scholar
  4. 4.
    Jepsen P U, Cooke D G, Koch M. Terahertz spectroscopy and imaging-modern techniques and applications. Laser & Photonics Reviews, 2011, 5(1): 124–166Google Scholar
  5. 5.
    Ulbricht R, Hendry E, Shan J, Heinz T F, Bonn M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern Physics, 2011, 83(2): 543–586Google Scholar
  6. 6.
    McIntosh A I, Yang B, Goldup S M, Watkinson M, Donnan R S. Terahertz spectroscopy: a powerful new tool for the chemical sciences? Chemical Society Reviews, 2012, 41(6): 2072–2082Google Scholar
  7. 7.
    Kübler C, Ehrke H, Huber R, Lopez R, Halabica A, Haglund R F Jr, Leitenstorfer A. Coherent structural dynamics and electronic correlations during an ultrafast insulator-to-metal phase transition in VO2. Physical Review Letters, 2007, 99(11): 116401Google Scholar
  8. 8.
    Leahy-Hoppa M R, Fitch M J, Zheng X, Hayden L M, Osiander R. Wideband terahertz spectroscopy of explosives. Chemical Physics Letters, 2007, 434(4-6): 227–230Google Scholar
  9. 9.
    Davies A G, Burnett A D, Fan W, Linfield E H, Cunningham J E. Terahertz spectroscopy of explosives and drugs. Materials Today, 2008, 11(3): 18–26Google Scholar
  10. 10.
    Dai J, Xie X, Zhang X C. Detection of broadband terahertz waves with a laser-induced plasma in gases. Physical Review Letters, 2006, 97(10): 103903Google Scholar
  11. 11.
    Karpowicz N, Dai J, Lu X, Chen Y, Yamaguchi M, Zhao H, Zhang X C, Zhang L, Zhang C, Price-Gallagher M, Fletcher C, Mamer O, Lesimple A, Johnson K. Coherent heterodyne time-domain spectrometry covering the entire ‘terahertz gap’. Applied Physics Letters, 2008, 92(1): 011131Google Scholar
  12. 12.
    Liu J, Zhang X C. Birefringence and absorption coefficients of alpha barium borate in terahertz range. Journal of Applied Physics, 2009, 106(2): 023107Google Scholar
  13. 13.
    Zalkovskij M, Zoffmann Bisgaard C, Novitsky A, Malureanu R, Savastru D, Popescu A, Uhd Jepsen P, Lavrinenko A V. Ultrabroadband terahertz spectroscopy of chalcogenide glasses. Applied Physics Letters, 2012, 100(3): 031901Google Scholar
  14. 14.
    D’Angelo F, Mics Z, Bonn M, Turchinovich D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Optics Express, 2014, 22(10): 12475–12485Google Scholar
  15. 15.
    McLaughlin C V, Hayden L M, Polishak B, Huang S, Luo J, Kim T D, Jen A K Y. Wideband 15 THz response using organic electrooptic polymer emitter-sensor pairs at telecommunication wavelengths. Applied Physics Letters, 2008, 92(15): 151107Google Scholar
  16. 16.
    Seifert T, Jaiswal S, Martens U, Hannegan J, Braun L, Maldonado P, Freimuth F, Kronenberg A, Henrizi J, Radu I, Beaurepaire E, Mokrousov Y, Oppeneer P M, Jourdan M, Jakob G, Turchinovich D, Hayden L M, Wolf M, Münzenberg M, Kläui M, Kampfrath T. Efficient metallic spintronic emitters of ultrabroadband terahertz radiation. Nature Photonics, 2016, 10(7): 483–488Google Scholar
  17. 17.
    Clough B, Dai J, Zhang X C. Laser air photonics: beyond the terahertz gap. Materials Today, 2012, 15(1-2): 50–58Google Scholar
  18. 18.
    Chen Y, Yamaguchi M, Wang M, Zhang X C. Terahertz pulse generation from noble gases. Applied Physics Letters, 2007, 91 (25): 251116Google Scholar
  19. 19.
    Lu X, Karpowicz N, Chen Y, Zhang X C. Systematic study of broadband terahertz gas sensor. Applied Physics Letters, 2008, 93 (26): 261106Google Scholar
  20. 20.
    Kress M, Löffler T, Eden S, Thomson M, Roskos H G. Terahertzpulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves. Optics Letters, 2004, 29(10): 1120–1122Google Scholar
  21. 21.
    Xie X, Dai J, Zhang X C. Coherent control of THz wave generation in ambient air. Physical Review Letters, 2006, 96(7): 075005Google Scholar
  22. 22.
    Leisawitz D T, Danchi W C, DiPirro M J, Feinberg L D, Gezari D Y, Hagopian M, Langer W D, Mather J C, Moseley S H, Shao M, Silverberg R F, Staguhn J G, Swain M R, Yorke H W, Zhang X L. Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers. In: Proceedings of SPIE 4013, UV, Optical, and IR Space Telescopes and Instruments. Munich, Germany: SPIE, 2000, 36–46Google Scholar
  23. 23.
    Ferguson B, Zhang X C. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26–33Google Scholar
  24. 24.
    Siegel P H. Terahertz technology. IEEE Transactions on Microwave Theory and Techniques, 2002, 50(3): 910–928Google Scholar
  25. 25.
    Tonouchi M. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97–105Google Scholar
  26. 26.
    Kimmitt M F. Restrahlen to T-rays -100 years of terahertz radiation. Journal of Biological Physics, 2003, 29(2–3): 77–85Google Scholar
  27. 27.
    Siegel P H. Terahertz pioneer: David H. Auston. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 6–8Google Scholar
  28. 28.
    Siegel P H. Terahertz pioneer: Maurice F. Kimmitt ‘A Person Who Makes ThingsWork’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(1): 6–9Google Scholar
  29. 29.
    Siegel P H. Terahertz pioneer: Thomas G. Phillips ‘The Sky Above, the Mountain Below’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(5): 478–484Google Scholar
  30. 30.
    Siegel P H. Terahertz pioneer: Frank C. De Lucia ‘The Numbers Count’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(6): 578–583Google Scholar
  31. 31.
    Siegel P H. Terahertz pioneer: Richard J. Saykally -water, water everywhere..... IEEE Transactions on Terahertz Science and Technology, 2012, 2(3): 266–270Google Scholar
  32. 32.
    Siegel P H. Terahertz pioneer: RobertW.Wilson the foundations of THz radio science. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 162–166Google Scholar
  33. 33.
    Siegel P H. Terahertz pioneer: Daniel R. Grischkowsky ‘We Search for Truth and Beauty’. IEEE Transactions on Terahertz Science and Technology, 2012, 2(4): 378–382Google Scholar
  34. 34.
    Siegel P H. Terahertz pioneers: Manfred Winnewisser and Brenda PrudenWinnewisser: ‘Equating Hamiltonians to nature’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(3): 229–236Google Scholar
  35. 35.
    Siegel P H. Terahertz pioneer: Sir John B. Pendry ‘Theoretical Physics for a Practical World’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(6): 693–701Google Scholar
  36. 36.
    Siegel P H. Terahertz pioneer: Philippe Goy “If You Agree with the Majority, You Might be Wrong”. IEEE Transactions on Terahertz Science and Technology, 2013, 3(4): 348–353Google Scholar
  37. 37.
    Siegel P H. Terahertz pioneer: Federico Capasso “Physics by Design: Engineering Our Way Out of the THz Gap”. IEEE Transactions on Terahertz Science and Technology, 2013, 3(1): 6–13Google Scholar
  38. 38.
    Siegel P H. Terahertz pioneer: Fritz Keilmann-‘RF Biophysics: From strong field to near field’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(5): 506–514Google Scholar
  39. 39.
    Siegel P H. Terahertz pioneer: Koji Mizuno ‘50 Years in Submillimeter-Waves: From Otaku to Sensei’. IEEE Transactions on Terahertz Science and Technology, 2013, 3(2): 130–133Google Scholar
  40. 40.
    Siegel P H. Terahertz pioneer: Erik L. Kollberg ‘Instrument Maker to the Stars’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(5): 538–544Google Scholar
  41. 41.
    Siegel P H. Terahertz pioneer: Michael Bass ‘The THz Light at the End of the Tunnel’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(4): 410–417Google Scholar
  42. 42.
    Siegel P H. Terahertz pioneer: Shenggang Liu ‘China’s Father of Vacuum and Microwave Electronics’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(1): 6–11Google Scholar
  43. 43.
    Siegel P H. Terahertz pioneer: Mattheus (Thijs) de Graauw ‘Intention, Attention, Execution’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(2): 138–146Google Scholar
  44. 44.
    Siegel P H. Terahertz pioneer: Robert J. Mattauch “Two Terminals Will Suffice”. IEEE Transactions on Terahertz Science and Technology, 2014, 4(6): 646–652Google Scholar
  45. 45.
    Siegel P H. Terahertz pioneer: Tatsuo Itoh ‘Transmission Lines and Antennas: Left and Right’. IEEE Transactions on Terahertz Science and Technology, 2014, 4(3): 298–306Google Scholar
  46. 46.
    Siegel P H. Terahertz pioneer: Xi-Cheng Zhang ‘The Face of THz’. IEEE Transactions on Terahertz Science and Technology, 2015, 5 (5): 706–714Google Scholar
  47. 47.
    Phillips T G, Keene J. Submillimeter astronomy (heterodyne spectroscopy). Proceedings of the IEEE, 1992, 80(11): 1662–1678Google Scholar
  48. 48.
    Siegel P H, Pikov V. Impact of low intensity millimetre waves on cell functions. Electronics Letters, 2010, 46(26): S70Google Scholar
  49. 49.
    Alexandrov B S, Gelev V, Bishop A R, Usheva A, Rasmussen K O. DNA breathing dynamics in the presence of a terahertz field. Physics Letters A, 2010, 374(10): 1214–1217zbMATHGoogle Scholar
  50. 50.
    Yang Y, Mandehgar M, Grischkowsky D R. Broadband THz pulse transmission through the atmosphere. IEEE Transactions on Terahertz Science and Technology, 2011, 1(1): 264–273Google Scholar
  51. 51.
    Svelto O, Hanna D C. Principles of Lasers. Boston, MA: Springer, 2009Google Scholar
  52. 52.
    Wu Z, Fisher A S, Goodfellow J, Fuchs M, Daranciang D, Hogan M, Loos H, Lindenberg A. Intense terahertz pulses from SLAC electron beams using coherent transition radiation. Review of Scientific Instruments, 2013, 84(2): 022701Google Scholar
  53. 53.
    Elias L R, Hu J, Ramian G. The UCSB electrostatic accelerator free electron laser: first operation. Nuclear Instruments & Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment, 1985, 237(1-2): 203–206Google Scholar
  54. 54.
    Reimann K. Table-top sources of ultrashort THz pulses. Reports on Progress in Physics, 2007, 70(10): 1597–1632Google Scholar
  55. 55.
    Kitaeva G K. Terahertz generation by means of optical lasers. Laser Physics Letters, 2008, 5(8): 559–576Google Scholar
  56. 56.
    Hebling J, Yeh K L, Hoffmann M C, Bartal B, Nelson K A. Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities. Journal of the Optical Society of America. B, Optical Physics, 2008, 25(7): B6Google Scholar
  57. 57.
    Rice A, Jin Y, Ma X F, Zhang X C, Bliss D, Larkin J, Alexander M. Terahertz optical rectification from <110>zinc-blende crystals. Applied Physics Letters, 1994, 64(11): 1324–1326Google Scholar
  58. 58.
    Fülöp J A, Pálfalvi L, Klingebiel S, Almási G, Krausz F, Karsch S, Hebling J. Generation of sub-mJ terahertz pulses by optical rectification. Optics Letters, 2012, 37(4): 557–559Google Scholar
  59. 59.
    Shalaby M, Hauri C P. Demonstration of a low-frequency threedimensional terahertz bullet with extreme brightness. Nature Communications, 2015, 6(1): 5976Google Scholar
  60. 60.
    Hirori H, Doi A, Blanchard F, Tanaka K. Single-cycle terahertz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3. Applied Physics Letters, 2011, 98(9): 091106Google Scholar
  61. 61.
    Auston D H. Picosecond optoelectronic switching and gating in silicon. Applied Physics Letters, 1975, 26(3): 101–103Google Scholar
  62. 62.
    Mourou G, Stancampiano C V, Antonetti A, Orszag A. Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch. Applied Physics Letters, 1981, 39(4): 295–296Google Scholar
  63. 63.
    Budiarto E, Margolies J, Jeong S, Son J, Bokor J. High-intensity terahertz pulses at 1-kHz repetition rate. IEEE Journal of Quantum Electronics, 1996, 32(10): 1839–1846Google Scholar
  64. 64.
    Look D C. Molecular beam epitaxial GaAs grown at low temperatures. Thin Solid Films, 1993, 231(1-2): 61–73Google Scholar
  65. 65.
    Beard M C, Turner G M, Schmuttenmaer C A. Subpicosecond carrier dynamics in low-temperature grown GaAs as measured by time-resolved terahertz spectroscopy. Journal of Applied Physics, 2001, 90(12): 5915–5923Google Scholar
  66. 66.
    Richards P L. Bolometers for infrared and millimeter waves. Journal of Applied Physics, 1994, 76(1): 1–24Google Scholar
  67. 67.
    Mauskopf P D, Bock J J, Del Castillo H, Holzapfel W L, Lange A E. Composite infrared bolometers with Si3N4 micromesh absorbers. Applied Optics, 1997, 36(4): 765–771Google Scholar
  68. 68.
    Nahum M, Martinis J M. Ultrasensitive-hot-electron microbolometer. Applied Physics Letters, 1993, 63(22): 3075–3077Google Scholar
  69. 69.
    Golay M J E. A pneumatic infra-red detector. Review of Scientific Instruments, 1947, 18(5): 357–362Google Scholar
  70. 70.
    Gautschi G. Piezoelectric Sensorics: Force, Strain, Pressure, Acceleration and Acoustic Emission Sensors, Materials and Amplifiers. Berlin, Heidelberg: Springer, 2002Google Scholar
  71. 71.
    Komiyama S, Astafiev O, Antonov V, Kutsuwa T, Hirai H. A single-photon detector in the far-infrared range. Nature, 2000, 403 (6768): 405–407Google Scholar
  72. 72.
    Kim K T, Zhang C, Shiner A D, Schmidt B E, Légaré F, Villeneuve D M, Corkum P B. Petahertz optical oscilloscope. Nature Photonics, 2013, 7(12): 958–962Google Scholar
  73. 73.
    Teo S M, Ofori-Okai B K, Werley C A, Nelson K A. Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Review of Scientific Instruments, 2015, 86(5): 051301Google Scholar
  74. 74.
    Wu Q, Zhang X C. Free-space electro-optic sampling of terahertz beams. Applied Physics Letters, 1995, 67(24): 3523–3525Google Scholar
  75. 75.
    Leitenstorfer A, Hunsche S, Shah J, Nuss M C, Knox W H. Detectors and sources for ultrabroadband electro-optic sampling: experiment and theory. Applied Physics Letters, 1999, 74(11): 1516–1518Google Scholar
  76. 76.
    Auston D H, Smith P R. Generation and detection of millimeter waves by picosecond photoconductivity. Applied Physics Letters, 1983, 43(7): 631–633Google Scholar
  77. 77.
    Grischkowsky D, Keiding S, van Exter M, Fattinger C. Farinfrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. Journal of the Optical Society of America. B, Optical Physics, 1990, 7(10): 2006Google Scholar
  78. 78.
    Wu Q, Hewitt T D, Zhang X C. Two-dimensional electro-optic imaging of THz beams. Applied Physics Letters, 1996, 69(8): 1026–1028Google Scholar
  79. 79.
    Mittleman D M, Jacobsen R H, Nuss M C. T-ray imaging. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 679–692Google Scholar
  80. 80.
    Mittleman D M, Hunsche S, Boivin L, Nuss M C. T-ray tomography. Optics Letters, 1997, 22(12): 904–906Google Scholar
  81. 81.
    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Physics in Medicine and Biology, 2002, 47(21): 3853–3863Google Scholar
  82. 82.
    Seco-Martorell C, López-Domínguez V, Arauz-Garofalo G, Redo-Sanchez A, Palacios J, Tejada J. Goya’s artwork imaging with Terahertz waves. Optics Express, 2013, 21(15): 17800–17805Google Scholar
  83. 83.
    Zhong H, Xu J Z, Xie X, Yuan T, Reightler R, Madaras E, Zhang X C. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sensors Journal, 2005, 5(2): 203–208Google Scholar
  84. 84.
    Beard M C, Turner G M, Schmuttenmaer C A. Terahertz Spectroscopy. Journal of Physical Chemistry B, 2002, 106(29): 7146–7159Google Scholar
  85. 85.
    Sell A, Leitenstorfer A, Huber R. Phase-locked generation and field-resolved detection of widely tunable terahertz pulses with amplitudes exceeding 100 MV/cm. Optics Letters, 2008, 33(23): 2767–2769Google Scholar
  86. 86.
    Kampfrath T, Tanaka K, Nelson K A. Resonant and nonresonant control over matter and light by intense terahertz transients. Nature Photonics, 2013, 7(9): 680–690Google Scholar
  87. 87.
    Schubert O, Hohenleutner M, Langer F, Urbanek B, Lange C, Huttner U, Golde D, Meier T, Kira M, Koch S W, Huber R. Subcycle control of terahertz high-harmonic generation by dynamical Bloch oscillations. Nature Photonics, 2014, 8(2): 119–123Google Scholar
  88. 88.
    Hamster H, Sullivan A, Gordon S, White W, Falcone R W. Subpicosecond, electromagnetic pulses from intense laser-plasma interaction. Physical Review Letters, 1993, 71(17): 2725–2728Google Scholar
  89. 89.
    Löffler T, Jacob F, Roskos H G. Generation of terahertz pulses by photoionization of electrically biased air. Applied Physics Letters, 2000, 77(3): 453–455Google Scholar
  90. 90.
    Cook D J, Hochstrasser RM. Intense terahertz pulses by four-wave rectification in air. Optics Letters, 2000, 25(16): 1210–1212Google Scholar
  91. 91.
    Liu J, Zhang X C. Terahertz-radiation-enhanced emission of fluorescence from gas plasma. Physical Review Letters, 2009, 103 (23): 235002Google Scholar
  92. 92.
    Clough B, Liu J, Zhang X C. Laser-induced photoacoustics influenced by single-cycle terahertz radiation. Optics Letters, 2010, 35(21): 3544–3546Google Scholar
  93. 93.
    Hamster H, Sullivan A, Gordon S, Falcone R W. Short-pulse terahertz radiation from high-intensity-laser-produced plasmas. Physical Review E: Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1994, 49(1): 671–677Google Scholar
  94. 94.
    Durand M, Houard A, Prade B, Mysyrowicz A, Durécu A, Moreau B, Fleury D, Vasseur O, Borchert H, Diener K, Schmitt R, Théberge F, Chateauneuf M, Daigle J F, Dubois J. Kilometer range filamentation. Optics Express, 2013, 21(22): 26836–26845Google Scholar
  95. 95.
    D’Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A, Tikhonchuk V T. Conical forward THz emission from femtosecond-laser-beam filamentation in air. Physical Review Letters, 2007, 98(23): 235002Google Scholar
  96. 96.
    Houard A, Liu Y, Prade B, Tikhonchuk V T, Mysyrowicz A. Strong enhancement of terahertz radiation from laser filaments in air by a static electric field. Physical Review Letters, 2008, 100 (25): 255006Google Scholar
  97. 97.
    Liu Y, Houard A, Prade B, Mysyrowicz A, Diaw A, Tikhonchuk V T. Amplification of transition-Cherenkov terahertz radiation of femtosecond filament in air. Applied Physics Letters, 2008, 93(5): 051108Google Scholar
  98. 98.
    Mitryukovskiy S I, Liu Y, Prade B, Houard A, Mysyrowicz A. Coherent synthesis of terahertz radiation from femtosecond laser filaments in air. Applied Physics Letters, 2013, 102(22): 221107Google Scholar
  99. 99.
    Kim K Y, Glownia J H, Taylor A J, Rodriguez G. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields. Optics Express, 2007, 15(8): 4577–4584Google Scholar
  100. 100.
    Karpowicz N, Zhang X C. Coherent terahertz echo of tunnel ionization in gases. Physical Review Letters, 2009, 102(9): 093001Google Scholar
  101. 101.
    Bergé L, Skupin S, Köhler C, Babushkin I, Herrmann J. 3D numerical simulations of THz generation by two-color laser filaments. Physical Review Letters, 2013, 110(7): 073901Google Scholar
  102. 102.
    Clerici M, Peccianti M, Schmidt B E, Caspani L, Shalaby M, Giguère M, Lotti A, Couairon A, Légaré F, Ozaki T, Faccio D, Morandotti R. Wavelength scaling of terahertz generation by gas ionization. Physical Review Letters, 2013, 110(25): 253901Google Scholar
  103. 103.
    Oh T I, Yoo Y J, You Y S, Kim K Y. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling. Applied Physics Letters, 2014, 105(4): 041103Google Scholar
  104. 104.
    Thomson M D, Blank V, Roskos H G. Terahertz white-light pulses from an air plasma photo-induced by incommensurate two-color optical fields. Optics Express, 2010, 18(22): 23173–23182Google Scholar
  105. 105.
    Dai J, Zhang X C. Terahertz wave generation from gas plasma using a phase compensator with attosecond phase-control accuracy. Applied Physics Letters, 2009, 94(2): 021117Google Scholar
  106. 106.
    Wen H, Lindenberg A M. Coherent terahertz polarization control through manipulation of electron trajectories. Physical Review Letters, 2009, 103(2): 023902Google Scholar
  107. 107.
    Dai J, Karpowicz N, Zhang X C. Coherent polarization control of terahertz waves generated from two-color laser-induced gas plasma. Physical Review Letters, 2009, 103(2): 023001Google Scholar
  108. 108.
    Zhong H, Karpowicz N, Zhang X C. Terahertz emission profile from laser-induced air plasma. Applied Physics Letters, 2006, 88 (26): 261103Google Scholar
  109. 109.
    Klarskov P, Strikwerda A C, Iwaszczuk K, Jepsen P U. Experimental three-dimensional beam profiling and modeling of a terahertz beam generated from a two-color air plasma. New Journal of Physics, 2013, 15(7): 075012Google Scholar
  110. 110.
    Blank V, Thomson M D, Roskos H G. Spatio-spectral characteristics of ultra-broadband THz emission from two-colourphotoexcited gas plasmas and their impact for nonlinear spectroscopy. New Journal of Physics, 2013, 15(7): 075023Google Scholar
  111. 111.
    You Y S, Oh T I, Kim K Y. Off-axis phase-matched terahertz emission from two-color laser-induced plasma filaments. Physical Review Letters, 2012, 109(18): 183902Google Scholar
  112. 112.
    Gorodetsky A, Koulouklidis A D, Massaouti M, Tzortzakis S. Physics of the conical broadband terahertz emission from twocolor laser-induced plasma filaments. Physical Review A., 2014, 89(3): 033838Google Scholar
  113. 113.
    Wang T J, Yuan S, Chen Y, Daigle J F, Marceau C, Théberge F, Châteauneuf M, Dubois J, Chin S L. Toward remote high energy terahertz generation. Applied Physics Letters, 2010, 97(11): 111108Google Scholar
  114. 114.
    Wang T J, Daigle J F, Yuan S, Théberge F, Châteauneuf M, Dubois J, Roy G, Zeng H, Chin S L. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air. Physical Review A., 2011, 83(5): 053801Google Scholar
  115. 115.
    Nahata A, Heinz T F. Detection of freely propagating terahertz radiation by use of optical second-harmonic generation. Optics Letters, 1998, 23(1): 67–69Google Scholar
  116. 116.
    Liu J, Zhang X C. Enhancement of laser-induced fluorescence by intense terahertz pulses in gases. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 229–236Google Scholar
  117. 117.
    Liu J, Dai J, Zhang X C. Ultrafast broadband terahertz waveform measurement utilizing ultraviolet plasma photoemission. Journal of the Optical Society of America B, Optical Physics, 2011, 28(4): 796Google Scholar
  118. 118.
    Liu J, Dai J, Chin S L, Zhang X C. Broadband terahertz wave remote sensing using coherent manipulation of fluorescence from asymmetrically ionized gases. Nature Photonics, 2010, 4(9): 627–631Google Scholar
  119. 119.
    Clough B, Liu J, Zhang X C. “All air-plasma” terahertz spectroscopy. Optics Letters, 2011, 36(13): 2399–2401Google Scholar
  120. 120.
    Maker P D, Terhune R W, Savage C M. Optical third harmonic generation. In: Proceedings of the 3rd International Congress, Quantum Electron. Paris: Dunod Éditeur, 1964, 1559Google Scholar
  121. 121.
    Talebpour A, Yang J, Chin S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse. Optics Communications, 1999, 163(1-3): 29–32Google Scholar
  122. 122.
    Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media. Physics Reports, 2007, 441(2-4): 47–189Google Scholar
  123. 123.
    Chin S L. Femtosecond Laser Filamentation. New York: Springer, 2010Google Scholar
  124. 124.
    Abdollahpour D, Suntsov S, Papazoglou D G, Tzortzakis S. Measuring easily electron plasma densities in gases produced by ultrashort lasers and filaments. Optics Express, 2011, 19(18): 16866–16871Google Scholar
  125. 125.
    Arévalo E, Becker A. Theoretical analysis of fluorescence signals in filamentation of femtosecond laser pulses in nitrogen molecular gas. Physical Review A., 2005, 72(4): 043807Google Scholar
  126. 126.
    Talebpour A, Petit S, Chin S. Re-focusing during the propagation of a focused femtosecond Ti:Sapphire laser pulse in air. Optics Communications, 1999, 171(4-6): 285–290Google Scholar
  127. 127.
    Bukin V V, Vorob’ev N S, Garnov S V, Konov V I, Lozovoi V I, Malyutin A A, Shchelev M Y, Yatskovskii I S. Formation and development dynamics of femtosecond laser microplasma in gases. Quantum Electronics, 2006, 36(7): 638–645Google Scholar
  128. 128.
    Martin F, Mawassi R, Vidal F, Gallimberti I, Comtois D, Pépin H, Kieffer J C, Mercure H P. Spectroscopic study of ultrashort pulse laser-breakdown plasmas in air. Applied Spectroscopy, 2002, 56 (11): 1444–1452Google Scholar
  129. 129.
    Herzberg G. Molecular Spectra and Molecular Structure. Malabar, FL: R.E. Krieger Pub. Co, 1989Google Scholar
  130. 130.
    Becker A, Bandrauk A D, Chin S L. S-matrix analysis of nonresonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule. Chemical Physics Letters, 2001, 343(3-4): 345–350Google Scholar
  131. 131.
    Xu H L, Azarm A, Bernhardt J, Kamali Y, Chin S L. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chemical Physics, 2009, 360(1-3): 171–175Google Scholar
  132. 132.
    Vidal F, Comtois D, Chien C Y, Desparois A, La Fontaine B, Johnston T W, Kieffer J C, Mercure H P, Pepin H, Rizk F A. Modeling the triggering of streamers in air by ultrashort laser pulses. IEEE Transactions on Plasma Science, 2000, 28(2): 418–433Google Scholar
  133. 133.
    Sato M, Higuchi T, Kanda N, Konishi K, Yoshioka K, Suzuki T, Misawa K, Kuwata-Gonokami M. Terahertz polarization pulse shaping with arbitrary field control. Nature Photonics, 2013, 7(9): 724–731Google Scholar
  134. 134.
    Amico C D, Houard A, Akturk S, Liu Y, Le Bloas J, Franco M, Prade B, Couairon A, Tikhonchuk V T, Mysyrowicz A. Forward THz radiation emission by femtosecond filamentation in gases: theory and experiment. New Journal of Physics, 2008, 10(1): 013015Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fabrizio Buccheri
    • 1
  • Pingjie Huang
    • 2
  • Xi-Cheng Zhang
    • 1
    • 3
    Email author
  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA
  2. 2.State Key Laboratory of Industrial Control Technology, College of Control Science and EngineeringZhejiang UniversityHangzhouChina
  3. 3.The Beijing Advanced Innovation Center for Imaging TechnologyCapital Normal UniversityBeijingChina

Personalised recommendations