Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 1, pp 69–76 | Cite as

Structure formation dynamics in drawing silica photonic crystal fibres

  • Wenyu Wang
  • Ghazal Fallah Tafti
  • Mingjie Ding
  • Yanhua Luo
  • Yuan Tian
  • Shuai Wang
  • Tomasz Karpisz
  • John Canning
  • Kevin Cook
  • Gang-Ding Peng
Research Article
  • 65 Downloads

Abstract

The special features of photonic crystal fibres (PCFs) are achieved by their air hole structures. PCF structure is determined and formed by its origin preform design and drawing process. Therefore, structure formation dynamics in drawing PCF is important for the fabrication of PCF achieving desirable structure and thus the intended feature. This paper will investigate structure formation dynamics of PCF drawing in relation to key parameters and conditions, such as hole dimension, temperature, pressure, etc.

Keywords

photonic crystal fibre (PCF) structure formation hole dimension hole position hole shift 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank AFRL, HEL-JTO and AFOSR/AOARD for providing the funding for this work under grant number FA2386-16-1-4031. T. K. thanks the support of the European Community project–PANTHER (Pacific Atlantic Network for Technical Higher Education and Research).

References

  1. 1.
    Buczynski R. Photonic crystal fibers. Acta Physica Polonica A, 2004, 106(2): 141–167CrossRefGoogle Scholar
  2. 2.
    Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. Optics Letters, 1997, 22(13): 961–963CrossRefGoogle Scholar
  3. 3.
    Stone J M. Photonic crystal fibres and their applications in the nonlinear regime. Dissertation for the Doctoral Degree. Bath: University of Bath, 2009Google Scholar
  4. 4.
    Michie A, Canning J, Lyytikäinen K, Aslund M, Digweed J. Temperature independent highly birefringent photonic crystal fibre. Optics Express, 2004, 12(21): 5160–5165CrossRefGoogle Scholar
  5. 5.
    Wadsworth W, Percival R, Bouwmans G, Knight J, Russell P. High power air-clad photonic crystal fibre laser. Optics Express, 2003, 11 (1): 48–53CrossRefGoogle Scholar
  6. 6.
    Cook K, Canning J, Holdsworth J, Dewhurst C. Stable CW singlemode photonic crystal fiber DFB ring laser. Journal of Electronic Science and Technology of China, 2008, 6(4): 442–444Google Scholar
  7. 7.
    Groothoff N, Canning J, Ryan T, Lyytikainen K, Inglis H. Distributed feedback photonic crystal fibre (DFB-PCF) laser. Optics Express, 2005, 13(8): 2924–2930CrossRefGoogle Scholar
  8. 8.
    Chen T, Chen R, Jewart C, Zhang B, Cook K, Canning J, Chen K P. Regenerated gratings in air-hole microstructured fibers for hightemperature pressure sensing. Optics Letters, 2011, 36(18): 3542–3544CrossRefGoogle Scholar
  9. 9.
    Michie A, Canning J, Bassett I, Haywood J, Digweed K, Ashton B, Stevenson M, Digweed J, Lau A, Scandurra D. Spun elliptically birefringent photonic crystal fibre for current sensing. Measurement Science & Technology, 2007, 18(10): 3070–3074CrossRefGoogle Scholar
  10. 10.
    Cook K, Canning J, Holdsworth J. Birefringent Bragg gratings in highly-nonlinear photonic crystal fiber. Journal of Electronic Science and Technology of China, 2008, 6(4): 426–428Google Scholar
  11. 11.
    Lyytikäinen K. Numerical simulation of a specialty optical fibre drawing process. In: Proceedings of 27th Australian Conference on Optical Fibre Technology. Australia: Sydney, 2002, 134–136Google Scholar
  12. 12.
    Lyytikäinen K, Råback P, Ruokolainen J. Numerical simulation of a specialty optical fibre drawing process. In: Proceedings of 4th International ASME/JSME/KSME Symp. Computational Technologies for Fluid/Thermal/Chemical/Stress System with Industrial Applications. Canada: Vancouver, BC, 2002, 267–275Google Scholar
  13. 13.
    Wynne R M. A Fabrication process for microstructured optical fibers. Journal of Lightwave Technology, 2006, 24(11): 4304–4313CrossRefGoogle Scholar
  14. 14.
    Fitt A D, Furusawa K, Monro T M, Please C P, Richardson D J. The mathematical modelling of capillary drawing for holey fibre manufacture. Journal of Engineering Mathematics, 2002, 43(2–4): 201–227MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Fitt A D, Furusawa K, Monro T M, Please C P. Modeling the fabrication of hollow fibers: capillary drawing. Journal of Lightwave Technology, 2001, 19(12): 1924–1931CrossRefGoogle Scholar
  16. 16.
    Yarin A L, Gospodinov P, Roussinov V I. Stability loss and sensitivity in hollow fiber drawing. Physics of Fluids, 1994, 6(4): 1454–1463CrossRefzbMATHGoogle Scholar
  17. 17.
    Gospodinov P, Yarinz A L. Draw resonance of optical microcapillaries in non-isothermal drawing. International Journal of Multiphase Flow, 1997, 23(5): 967–976CrossRefzbMATHGoogle Scholar
  18. 18.
    Wadsworth W, Witkowska A, Leon-Saval S, Birks T. Hole inflation and tapering of stock photonic crystal fibres. Optics Express, 2005, 13(17): 6541–6549CrossRefGoogle Scholar
  19. 19.
    Chen Y, Birks T A. Predicting hole sizes after fibre drawing without knowing the viscosity. Optical Materials Express, 2013, 3(3): 346–356CrossRefGoogle Scholar
  20. 20.
    Lyytikäinen K, Zagari J, Barton G, Canning J. Heat transfer in a microstructured optical fibre preform. In: Proceedings of 11th International Plastic Optical Fibers Conference. Japan: Tokyo, 2002, 53–56Google Scholar
  21. 21.
    Lyytikäinen K, Zagari J, Barton G, Canning J. Heat transfer within a microstructured polymer optical fibre preform. Modelling and Simulation in Materials Science and Engineering, 2004, 12(3): S255CrossRefGoogle Scholar
  22. 22.
    Lyytikainen K, Canning J, Digweed J, Zagari J. Geometry control of air-silica structured optical fibres using pressurisation. In: Proceedings of Microwave and Optoeletronics Conference. Brazil: Parana, 2003, 1001–1005Google Scholar
  23. 23.
    Lyytikäinen K J. Control of complex structural geometry in optical fibre drawing. Dissertation for the Doctoral Degree. Sydney: University of Sydney, 2004, 157–176Google Scholar
  24. 24.
    Chen Y. Hole control in photonic crystal fibres. Dissertation for the Doctoral Degree. Bath: University of Bath, 2013, 52–61Google Scholar
  25. 25.
    Guo T Y, Luo S Q, Li H L, Jian S L. Control of the fabrication parameters during the fabrication of photonic crystal fibers. Acta Physica Sinica, 2009, 58(9): 6308–6315Google Scholar
  26. 26.
    Lyytikainen K, Canning J, Digweed J, Zagari J. Geometry control of air-silica structured optical fibres. In: Proceedings of Optical Internet & Australian Conference on Optical Fibre Technology. Australia: Melbourne, 2003, 137–140Google Scholar
  27. 27.
    Wang W, Karpisz T, Tafti G, Canning J, Cook K, Luo Y, Peng G. Optimal pressure for tuning the lattice structure of photoinic crystal fibre. In: Proceedings of 3rd Australian and New Zealand Conference on Optics and Photonics. New Zealand: Queenstown, 2017, Paper 141Google Scholar
  28. 28.
    Tafti G, Wang W, Karpisz T, Canning J, Cook K, Luo Y, Wang S, Peng G. Fabrication and structure of H-Bi micro-structured optical fibres. In: Proceedings of 3rd Australian and New Zealand Conference on Optics and Photonics. New Zealand: Queenstown, 2017, Paper 142Google Scholar
  29. 29.
    Hoo Y L, Jin W, Shi C, Ho H L, Wang D N, Ruan S C. Design and modeling of a photonic crystal fiber gas sensor. Applied Optics, 2003, 42(18): 3509–3515CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Wenyu Wang
    • 1
  • Ghazal Fallah Tafti
    • 1
  • Mingjie Ding
    • 1
  • Yanhua Luo
    • 1
  • Yuan Tian
    • 1
  • Shuai Wang
    • 1
    • 2
  • Tomasz Karpisz
    • 3
  • John Canning
    • 1
    • 4
  • Kevin Cook
    • 1
    • 4
  • Gang-Ding Peng
    • 1
  1. 1.Photonics and Optical Communications, School of Electrical Engineering and TelecommunicationsUniversity of New South Wales (UNSW) SydneySydneyAustralia
  2. 2.Henan Key Laboratory of Laser and Opto-Electric Information Technology, School of Information EngineeringZhengzhou UniversityZhengzhouChina
  3. 3.Warsaw University of TechnologyWarsawPoland
  4. 4.interdisciplinary Photonics Laboratories (iPL), School of Electrical and Data Engineering, University of Technology Sydney, and School of ChemistryThe University of SydneySydneyAustralia

Personalised recommendations