Frontiers of Optoelectronics

, Volume 11, Issue 1, pp 53–59 | Cite as

Silicon waveguide cantilever displacement sensor for potential application for on-chip high speed AFM

  • Peng Wang
  • Aron Michael
  • Chee Yee Kwok
Review Article


This paper reviews an initial achievement of our group toward the development of on-chip parallel high-speed atomic force microscopy (HS-AFM). A novel AFM approach based on silicon waveguide cantilever displacement sensor is proposed. The displacement sensing approach uniquely allows the use of nano-scale wide cantilever that has a high resonance frequency and low spring constant desired for on-chip parallel HS-AFM. The approach consists of low loss silicon waveguide with nano-gap, highly efficient misalignment tolerant coupler, novel high aspect ratio (HAR) sharp nano-tips that can be integrated with nano-scale wide cantilevers and electrostatically driven nano-cantilever actuators. The simulation results show that the displacement sensor with optical power responsivity of 0.31%/nm and AFM cantilever with resonance frequency of 5.4 MHz and spring constant of 0.21 N/m are achievable with the proposed approach. The developed silicon waveguide fabrication method enables silicon waveguide with 6 and 7.5 dB/cm transmission loss for TE and TM modes, respectively, and formation of 13 nm wide nano-gaps between silicon waveguides. The coupler demonstrates misalignment tolerance of ±1.8 μm for 5 μm spot size lensed fiber and coupling loss of 2.12 dB/facet for standard cleaved single mode fiber without compromising other performance. The nano-tips with apex radius as small as 2.5 nm and aspect ratio of more than 50 has been enabled by the development of novel HAR nanotip fabrication technique. Integration of the HAR tips onto an array of 460 nm wide cantilever beam has also been demonstrated.


atomic force microscopy (AFM) silicon waveguide silicon coupler high aspect ratio (HAR) nanotips 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Binnig G, Quate C F, Gerber C. Atomic force microscope. Physical Review Letters, 1986, 56(9): 930–933CrossRefGoogle Scholar
  2. 2.
    Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T. Highspeed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nature Nanotechnology, 2010, 5(3): 208–212CrossRefGoogle Scholar
  3. 3.
    Somnath S, Kim H J, Hu H, King W P. Parallel nanoimaging and nanolithography using a heated microcantilever array. Nanotechnology, 2014, 25(1): 014001CrossRefGoogle Scholar
  4. 4.
    Pantazi A, Sebastian A, Antonakopoulos T A, Bächtold P, Bonaccio A R, Bonan J, Cherubini G, Despont M, DiPietro R A, Drechsler U, Dürig U, Gotsmann B, Häberle W, Hagleitner C, Hedrick J L, Jubin D, Knoll A, Lantz M A, Pentarakis J, Pozidis H, Pratt R C, Rothuizen H, Stutz R, Varsamou M, Wiesmann D, Eleftheriou E. Probe-based ultrahigh-density storage technology. IBM Journal of Research and Development, 2008, 52(4.5): 493–511CrossRefGoogle Scholar
  5. 5.
    Ando T, Kodera N, Takai E, Maruyama D, Saito K, Toda A. A highspeed atomic force microscope for studying biological macromolecules. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(22): 12468–12472CrossRefGoogle Scholar
  6. 6.
    Fukuda S, Uchihashi T, Iino R, Okazaki Y, Yoshida M, Igarashi K, Ando T. High-speed atomic force microscope combined with single-molecule fluorescence microscope. Review of Scientific Instruments, 2013, 84(7): 073706CrossRefGoogle Scholar
  7. 7.
    Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757CrossRefGoogle Scholar
  8. 8.
    Minne S C, Yaralioglu G, Manalis S R, Adams J D, Zesch J, Atalar A, Quate C F. Automated parallel high-speed atomic force microscopy. Applied Physics Letters, 1998, 72(18): 2340–2342CrossRefGoogle Scholar
  9. 9.
    Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393CrossRefGoogle Scholar
  10. 10.
    Giessibl J F. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork. Applied Physics Letters, 1998, 73(26): 3956–3958CrossRefGoogle Scholar
  11. 11.
    Göddenhenrich T, Lemke H, Hartmann U, Heiden C. Force microscope with capacitive displacement detection. Journal of Vacuum Science & Technology A, Vacuum, Surfaces, and Films, 1990, 8(1): 383–387CrossRefGoogle Scholar
  12. 12.
    von Schmidsfeld A, Nörenberg T, Temmen M, Reichling M. Understanding interferometry for micro-cantilever displacement detection. Beilstein Journal of Nanotechnology, 2016, 7: 841–851CrossRefGoogle Scholar
  13. 13.
    Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757CrossRefGoogle Scholar
  14. 14.
    Lee D H, Choo S J, Jung U, Lee K W, Kim K W, Park J H. Low-loss silicon waveguide with sidewall roughness reduction using a SiO2 hard mask and fluorine-based dry etching. Journal of Micromechanics and Microengineering, 2015, 25(1): 015003CrossRefGoogle Scholar
  15. 15.
    Dong P, Qian W, Liao S, Liang H, Kung C C, Feng N N, Shafiiha R, Fong J, Feng D, Krishnamoorthy A V, Asghari M. Low loss shallow-ridge silicon waveguides. Optics Express, 2010, 18(14): 14474–14479CrossRefGoogle Scholar
  16. 16.
    Debnath K, Arimoto H, Husain M, Prasmusinto A, Al-Attili A, Petra R, Chong H, Reed G, Saito S. Low-loss silicon waveguides and grating couplers fabricated using anisotropic wet etching technique. Frontiers in Materials, 2016, 3, doi:10.3389/famts.2016.00010Google Scholar
  17. 17.
    Pafchek R, Tummidi R, Li J, Webster MA, Chen E, Koch T L. Lowloss silicon-on-insulator shallow-ridge TE and TM waveguides formed using thermal oxidation. Applied Optics, 2009, 48(5): 958–963CrossRefGoogle Scholar
  18. 18.
    Lee K K, Lim D R, Kimerling L C, Shin J, Cerrina F. Fabrication of ultralow-loss Si/SiO2 waveguides by roughness reduction. Optics Letters, 2001, 26(23): 1888–1890CrossRefGoogle Scholar
  19. 19.
    Wang P, Michael A, Kwok C Y. Fabrication of sub-micro waveguides with vertical sidewall and reduced roughness for low loss applications. Procedia Engineering, 2014, 87: 979–982CrossRefGoogle Scholar
  20. 20.
    Taillaert D, Van Laere F, Ayre M, Bogaerts W, Van Thourhout D, Bienstman P, Baets R. Grating couplers for coupling between optical fibers and nanophotonic waveguides. Japanese Journal of Applied Physics, 2006, 45(8A): 6071–6077CrossRefGoogle Scholar
  21. 21.
    Tang Y, Wang Z, Wosinski L, Westergren U, He S. Highly efficient nonuniform grating coupler for silicon-on-insulator nanophotonic circuits. Optics Letters, 2010, 35(8): 1290–1292CrossRefGoogle Scholar
  22. 22.
    Cardenas J, Poitras C B, Luke K, Luo L W, Morton P A, Lipson M. High coupling efficiency etched facet tapers in silicon waveguides. IEEE Photonics Technology Letters, 2014, 26(23): 2380–2382CrossRefGoogle Scholar
  23. 23.
    Dewanjee A, Caspers J N, Aitchison J S, Mojahedi M. Demonstration of a compact bilayer inverse taper coupler for Si-photonics with enhanced polarization insensitivity. Optics Express, 2016, 24(25): 28194–28203CrossRefGoogle Scholar
  24. 24.
    Fang Q, Liow T Y, Song J F, Tan C W, Yu M B, Lo G Q, Kwong D L. Suspended optical fiber-to-waveguide mode size converter for silicon photonics. Optics Express, 2010, 18(8): 7763–7769CrossRefGoogle Scholar
  25. 25.
    Chen L, Doerr C R, Chen Y K, Liow T Y. Low-loss and broadband cantilever couplers between standard cleaved fibers and high-indexcontrast Si3N4 or Si waveguides. IEEE Photonics Technology Letters, 2010, 22(23): 1744–1746CrossRefGoogle Scholar
  26. 26.
    Wang P, Michael A, Kwok C Y. Cantilever inverse taper coupler with SiO2 gap for submicron silicon waveguides. IEEE Photonics Technology Letters, 2017, 29(16): 1407–1410CrossRefGoogle Scholar
  27. 27.
    Koelmans W W, Peters T, Berenschot E, de Boer M J, Siekman M H, Abelmann L. Cantilever arrays with self-aligned nanotips of uniform height. Nanotechnology, 2012, 23(13): 135301CrossRefGoogle Scholar
  28. 28.
    Vermeer R, Berenschot E, Sarajlic E, Tas N, Jansen H. Fabrication of novel AFM probe with high-aspect-ratio ultra-sharp three-face silicon nitride tips. In: Proceedings of 14th IEEE International Conference on Nanotechnology, 2014, 229–233CrossRefGoogle Scholar
  29. 29.
    Li J D, Xie J, Xue W, Wu D M. Fabrication of cantilever with selfsharpening nano-silicon-tip for AFM applications. Microsystem Technologies, 2013, 19(2): 285–290CrossRefGoogle Scholar
  30. 30.
    Miyazawa K, Izumi H, Watanabe-Nakayama T, Asakawa H, Fukuma T. Fabrication of electron beam deposited tip for atomicscale atomic force microscopy in liquid. Nanotechnology, 2015, 26 (10): 105707CrossRefGoogle Scholar
  31. 31.
    Beard J D, Gordeev S N. Fabrication and buckling dynamics of nanoneedle AFM probes. Nanotechnology, 2011, 22(17): 175303CrossRefGoogle Scholar
  32. 32.
    Engstrom D S, Savu V, Zhu X, Bu I Y, Milne W I, Brugger J, Boggild P. High throughput nanofabrication of silicon nanowire and carbon nanotube tips on AFM probes by stencil-deposited catalysts. Nano Letters, 2011, 11(4): 1568–1574CrossRefGoogle Scholar
  33. 33.
    Edgeworth J P, Burt D P, Dobson P S, Weaver J MR, Macpherson J V. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips. Nanotechnology, 2010, 21(10): 105605CrossRefGoogle Scholar
  34. 34.
    Spindt C A. A thin film field emission cathode. Journal of Applied Physics, 1968, 39(7): 3504–3505CrossRefGoogle Scholar
  35. 35.
    Itoh S, Watanabe T, Ohtsu K, Taniguchi M, Uzawa S, Nishimura N. Experimental study of field emission properties of the Spindt-type field emitter. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1995, 13(2): 487–490CrossRefGoogle Scholar
  36. 36.
    Spindt C A, Holland C E, Schwoebel P R, Brodie I. Field emitter array development for microwave applications. II. Journal of Vacuum Science & Technology B, Microelectronics and Nanometer Structures: Processing, Measurement, and Phenomena, 1998, 16(2): 758–761CrossRefGoogle Scholar
  37. 37.
    Wang P, Michael A, Kwok C Y. High aspect ratio sharp nanotip for nanocantilever integration at CMOS compatible temperature. Nanotechnology, 2017, 28(32): 32T01CrossRefGoogle Scholar
  38. 38.
    Minne S C, Adams J D, Yaralioglu G, Manalis S R, Atalar A, Quate C F. Centimeter scale atomic force microscope imaging and lithography. Applied Physics Letters, 1998, 73(12): 1742–1744CrossRefGoogle Scholar
  39. 39.
    Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Scientific Reports, 2015, 5(1): 16393CrossRefGoogle Scholar
  40. 40.
    Li M, Pernice W H P, Tang H X. Broadband all-photonic transduction of nanocantilevers. Nature Nanotechnology, 2009, 4 (6): 377–382CrossRefGoogle Scholar
  41. 41.
    Shoaib M, Hisham N, Basheer N, Tariq M. Frequency and displacement analysis of electrostatic cantilever based MEMS sensor. Analog Integrated Circuits & Signal Processing, 2016, 88 (1): 1–11CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical Engineering and TelecommunicationsUniversity of New South WalesKensingtonAustralia

Personalised recommendations