On-chip silicon polarization and mode handling devices
- 5 Downloads
Abstract
Mode- and polarization-division multiplexing are new promising options to increase the transmission capacity of optical communications. On-chip silicon polarization and mode handling devices are key components in integrated mode- and polarization-division multiplexed photonic circuits. In this paper, we review our recent progresses on silicon-based polarization beam splitters, polarization splitters and rotators, mode (de) multiplexers, and mode and polarization selective switches. Silicon polarization beam splitters and rotators are demonstrated with high extinction ratio, compact footprint and high fabrication tolerance. For on-chip mode multiplexing, we introduce a low loss and fabrication tolerant three-mode (de)multiplexer employing sub-wavelength grating structure. In analogy to a conventional wavelength selective switch in wavelength-division multiplexing, we demonstrate a selective switch that can route mode- and polarization-multiplexed signals.
Keywords
silicon photonics polarization beam splitter polarization splitter and rotator mode (de)multiplexer selective switchPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank Prof. Richard Soref, Prof. Xiaoqing Jiang, Prof. Jianyi Yang, and Prof. Christine Tremblay et al. for their helpful discussion and contributions. This work was supported in part by the National Natural Science Foundation of China (NSFC) (Grant Nos. 61605112, 61235007, 61505104), in part by the 863 High-Tech Program (No. 2015AA017001), and in part by the Science and Technology Commission of Shanghai Municipality (Nos. 15ZR1422800, 16XD1401400). We thank the Center for Advanced Electronic Materials and Devices (AEMD) of Shanghai Jiao Tong University for the support in device fabrications.
References
- 1.Richardson D, Fini J, Nelson L. Space-division multiplexing in optical fibres. Nature Photonics, 2013, 7(5): 354–362CrossRefGoogle Scholar
- 2.Winzer P J. Making spatial multiplexing a reality. Nature Photonics, 2014, 8(5): 345–348CrossRefGoogle Scholar
- 3.Ding Y, Kamchevska V, Dalgaard K, Ye F, Asif R, Gross S, Withford M J, Galili M, Morioka T, Oxenløwe L K. Reconfigurable SDM switching using novel silicon photonic integrated circuit. Scientific Reports, 2016, 6(1): 39058CrossRefGoogle Scholar
- 4.Bai N, Ip E, Huang Y K, Mateo E, Yaman F, Li MJ, Bickham S, Ten S, Liñares J, Montero C, Moreno V, Prieto X, Tse V, Man Chung K, Lau A P T, Tam H Y, Lu C, Luo Y, Peng G D, Li G, Wang T. Modedivision multiplexed transmission with inline few-mode fiber amplifier. Optics Express, 2012, 20(3): 2668–2680CrossRefGoogle Scholar
- 5.Ryf R, Randel S, Fontaine N K, Montoliu M, Burrows E, Chandrasekhar S, Gnauck A H, Xie C, Essiambre R J, Winzer P, Delbue R, Pupalaikis P, Sureka A, Sun Y, Gruner-Nielsen L, Jensen R V, Lingle R. 32-bit/s/Hz spectral efficiency WDM transmission over 177-km few-mode fiber. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5A.1Google Scholar
- 6.Thylén L, Wosinski L. Integrated photonics in the 21st century. Photonics Research, 2014, 2(2): 75–81CrossRefGoogle Scholar
- 7.Soref R. Silicon photonics: a review of recent literature. Silicon, 2010, 2(1): 1–6CrossRefGoogle Scholar
- 8.Gondarenko A, Levy J S, Lipson M. High confinement micron-scale silicon nitride high Q ring resonator. Optics Express, 2009, 17(14): 11366–11370CrossRefGoogle Scholar
- 9.Chen P, Zhu Y, Shi Y, Dai D, He S. Fabrication and characterization of suspended SiO2 ridge optical waveguides and the devices. Optics Express, 2012, 20(20): 22531–22536CrossRefGoogle Scholar
- 10.Nozaki K, Tanabe T, Shinya A, Matsuo S, Sato T, Taniyama H, Notomi M. Sub-femtojoule all-optical switching using a photoniccrystal nanocavity. Nature Photonics, 2010, 4(7): 477–483CrossRefGoogle Scholar
- 11.de Rossi A, Lauritano M, Combrié S, Tran Q V, Husko C. Interplay of plasma-induced and fast thermal nonlinearities in a GaAs-based photonic crystal nanocavity. Physical Review A, 2009, 79(4): 043818CrossRefGoogle Scholar
- 12.Wang C, Burek M J, Lin Z, Atikian H A, Venkataraman V, Huang I C, Stark P, Lončar M. Integrated high quality factor lithium niobate microdisk resonators. Optics Express, 2014, 22(25): 30924–30933CrossRefGoogle Scholar
- 13.Thomson D, Zilkie A, Bowers J E, Komljenovic T, Reed G T, Vivien L, Marris-Morini D, Cassan E, Virot L, Fédéli J M, Hartmann J M, Schmid J H, Xu D X, Boeuf F, O’Brien P, Mashanovich G Z, Nedeljkovic M. Roadmap on silicon photonics. Journal of Optics, 2016, 18(7): 073003CrossRefGoogle Scholar
- 14.Liu J, Sun X, Camacho-Aguilera R, Kimerling L C, Michel J. Geon-Si laser operating at room temperature. Optics Letters, 2010, 35 (5): 679–681CrossRefGoogle Scholar
- 15.Wirths S, Geiger R, von den Driesch N, Mussler G, Stoica T, Mantl S, Ikonic Z, Luysberg M, Chiussi S, Hartmann J M, Sigg H, Faist J, Buca D, Grützmacher D. Lasing in direct-bandgap GeSn alloy grown on Si. Nature Photonics, 2015, 9(2): 88–92CrossRefGoogle Scholar
- 16.Zhang Y, Zeng C, Li D, Zhao X, Gao G, Yu J, Xia J. Enhanced light emission from Ge quantum dots in photonic crystal ring resonator. Optics Express, 2014, 22(10): 12248–12254CrossRefGoogle Scholar
- 17.Zhang Y, Zeng C, Zhang H, Li D, Gao G, Huang Q, Wang Y, Yu J, Xia J. Single-mode emission from Ge quantum dots in photonic crystal nanobeam cavity. IEEE Photonics Technology Letters, 2015, 27(9): 1026–1029CrossRefGoogle Scholar
- 18.Xu H, Xiao X, Li X, Hu Y, Li Z, Chu T, Yu Y, Yu J. High speed silicon Mach-Zehnder modulator based on interleaved PN junctions. Optics Express, 2012, 20(14): 15093–15099CrossRefGoogle Scholar
- 19.Lu L, Zhao S, Zhou L, Li D, Li Z, Wang M, Li X, Chen J. 16 × 16 non-blocking silicon optical switch based on electro-optic Mach-Zehnder interferometers. Optics Express, 2016, 24(9): 9295–9307CrossRefGoogle Scholar
- 20.Liu B, Zhang Y, He Y, Jiang X, Peng J, Qiu C, Su Y. Silicon photonic bandpass filter based on apodized subwavelength grating with high suppression ratio and short coupling length. Optics Express, 2017, 25(10): 11359–11364CrossRefGoogle Scholar
- 21.Jiang X, Wu J, Yang Y, Pan T, Mao J, Liu B, Liu R, Zhang Y, Qiu C, Tremblay C, Su Y. Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach-Zehnder interferometer couplers. Optics Express, 2016, 24(3): 2183–2188CrossRefGoogle Scholar
- 22.Jiang X, Yang Y, Zhang H, Peng J, Zhang Y, Qiu C, Su Y. Design and experimental demonstration of a compact silicon photonic interleaver based on an interfering loop with wide spectral range. Journal of Lightwave Technology, 2017, 35(17): 3765–3771CrossRefGoogle Scholar
- 23.Zhang Y, Li D, Zeng C, Huang Z, Wang Y, Huang Q, Wu Y, Yu J, Xia J. Silicon optical diode based on cascaded photonic crystal cavities. Optics Letters, 2014, 39(6): 1370–1373CrossRefGoogle Scholar
- 24.Chen G, Yu Y, Deng S, Liu L, Zhang X. Bandwidth improvement for germanium photodetector using wire bonding technology. Optics Express, 2015, 23(20): 25700–25706CrossRefGoogle Scholar
- 25.Wang J, He S, Dai D. On-chip silicon 8-channel hybrid (de) multiplexer enabling simultaneous mode- and polarization-divisionmultiplexing. Laser & Photonics Reviews, 2014, 8(2): L18–L22CrossRefGoogle Scholar
- 26.Dai D, Bauters J, Bowers J E. Passive technologies for future largescale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light, Science & Applications, 2012, 1(3): e1CrossRefGoogle Scholar
- 27.Doerr C R, Chen L, Vermeulen D, Nielsen T, Azemati S, Stulz S, McBrien G, Xu X M, Mikkelsen B, Givehchi M, Rasmussen C, Park S Y. Single-chip silicon photonics 100-Gb/s coherent transceiver. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2014, Th5C.1Google Scholar
- 28.Dong P, Liu X, Sethumadhavan C, Buhl L L, Aroca R, Baeyens Y, Chen Y K. 224-Gb/s PDM-16-QAM modulator and receiver based on silicon photonic integrated circuits. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2013, PDP5C.6Google Scholar
- 29.Rahman B, Somasiri N, Themistos C, Grattan K. Design of optical polarization splitters in a single-section deeply etched MMI waveguide. Applied Physics B, Lasers and Optics, 2001, 73(5–6): 613–618CrossRefGoogle Scholar
- 30.Ding Y, Ou H, Peucheret C. Wideband polarization splitter and rotator with large fabrication tolerance and simple fabrication process. Optics Letters, 2013, 38(8): 1227–1229CrossRefGoogle Scholar
- 31.Ao X, Liu L, Wosinski L, He S. Polarization beam splitter based on a two-dimensional photonic crystal of pillar type. Applied Physics Letters, 2006, 89(17): 171115CrossRefGoogle Scholar
- 32.Feng J, Zhou Z. Polarization beam splitter using a binary blazed grating coupler. Optics Letters, 2007, 32(12): 1662–1664CrossRefGoogle Scholar
- 33.Chu H S, Li E P, Bai P, Hegde R. Optical performance of singlemode hybrid dielectric-loaded plasmonic waveguide-based components. Applied Physics Letters, 2010, 96(22): 221103CrossRefGoogle Scholar
- 34.Guan X, Wu H, Shi Y, Dai D. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262CrossRefGoogle Scholar
- 35.Fukuda H, Yamada K, Tsuchizawa T, Watanabe T, Shinojima H, Itabashi S. Ultrasmall polarization splitter based on silicon wire waveguides. Optics Express, 2006, 14(25): 12401–12408CrossRefGoogle Scholar
- 36.Dai D, Bowers J E. Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler. Optics Express, 2011, 19(19): 18614–18620CrossRefGoogle Scholar
- 37.Zhang Y, He Y, Wu J, Jiang X, Liu R, Qiu C, Jiang X, Yang J, Tremblay C, Su Y. High-extinction-ratio silicon polarization beam splitter with tolerance to waveguide width and coupling length variations. Optics Express, 2016, 24(6): 6586–6593CrossRefGoogle Scholar
- 38.Kim D W, Lee M H, Kim Y, Kim K H. Planar-type polarization beam splitter based on a bridged silicon waveguide coupler. Optics Express, 2015, 23(2): 998–1004CrossRefGoogle Scholar
- 39.Qiu H, Su Y, Yu P, Hu T, Yang J, Jiang X. Compact polarization splitter based on silicon grating-assisted couplers. Optics Letters, 2015, 40(9): 1885–1887CrossRefGoogle Scholar
- 40.Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y. Ultra-compact broadband silicon polarization beam splitter based on a bridged bent directional coupler. In: Proceedings of IEEE 13th International Conference on Group IV Photonics (GFP). IEEE Photonics Society, 2016, ThP18Google Scholar
- 41.Liu L, Ding Y, Yvind K, Hvam J M. Efficient and compact TE-TM polarization converter built on silicon-on-insulator platform with a simple fabrication process. Optics Letters, 2011, 36(7): 1059–1061CrossRefGoogle Scholar
- 42.Liu L, Ding Y, Yvind K, Hvam J M. Silicon-on-insulator polarization splitting and rotating device for polarization diversity circuits. Optics Express, 2011, 19(13): 12646–12651CrossRefGoogle Scholar
- 43.Tan K, Huang Y, Lo G Q, Yu C, Lee C. Ultra-broadband fabricationtolerant polarization splitter and rotator. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.7Google Scholar
- 44.Wang J, Niu B, Sheng Z, Wu A, Li W, Wang X, Zou S, Qi M, Gan F. Novel ultra-broadband polarization splitter-rotator based on modeevolution tapers and a mode-sorting asymmetric Y-junction. Optics Express, 2014, 22(11): 13565–13571CrossRefGoogle Scholar
- 45.Zhang Y, He Y, Jiang X, Liu B, Qiu C, Su Y, Soref R A. Ultracompact and highly efficient silicon polarization splitter and rotator. APL Photonics, 2016, 1(9): 091304CrossRefGoogle Scholar
- 46.He Y, Zhang Y, Wang X, Liu B, Jiang X, Qiu C, Su Y, Soref R. Silicon polarization splitter and rotator using a subwavelength grating based directional coupler. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, Th1G.6Google Scholar
- 47.Ding Y, Liu L, Peucheret C, Ou H. Fabrication tolerant polarization splitter and rotator based on a tapered directional coupler. Optics Express, 2012, 20(18): 20021–20027CrossRefGoogle Scholar
- 48.Xiong Y, Xu D X, Schmid J H, Cheben P, Janz S, Ye W N. Fabrication tolerant and broadband polarization splitter and rotator based on a taper-etched directional coupler. Optics Express, 2014, 22(14): 17458–17465CrossRefGoogle Scholar
- 49.Halir R, Bock P J, Cheben P, Ortega-Moñux A, Alonso-Ramos C, Schmid J H, Lapointe J, Xu D X, Wangüemert-Pérez J G, Molina-Fernández Í, Janz S. Waveguide sub-wavelength structures: a review of principles and applications. Laser & Photonics Reviews, 2015, 9 (1): 25–49CrossRefGoogle Scholar
- 50.Xing J, Li Z, Xiao X, Yu J, Yu Y. Two-mode multiplexer and demultiplexer based on adiabatic couplers. Optics Letters, 2013, 38 (17): 3468–3470CrossRefGoogle Scholar
- 51.Riesen N, Love J D. Design of mode-sorting asymmetric Yjunctions. Applied Optics, 2012, 51(15): 2778–2783CrossRefGoogle Scholar
- 52.Dai D, Wang J, Shi Y. Silicon mode (de)multiplexer enabling high capacity photonic networks-on-chip with a single-wavelengthcarrier light. Optics Letters, 2013, 38(9): 1422–1424CrossRefGoogle Scholar
- 53.Luo L W, Ophir N, Chen C P, Gabrielli L H, Poitras C B, Bergmen K, Lipson M. WDM-compatible mode-division multiplexing on a silicon chip. Nature Communications, 2014, 5: 3069Google Scholar
- 54.He Y, Zhang Y, Jiang X, Qiu C, Su Y. On-chip silicon three-mode (de)multiplexer employing subwavelength grating structure. In: Proceedings of 43nd European Conference on Optical CommunicationC. ECO, 2017, W2C.3Google Scholar
- 55.Doerr C R, Buhl L, Chen L, Dupuis N. Monolithic gridless 1 × 2 wavelength-selective switch in silicon. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Optical Society of America, 2011, PDPC4Google Scholar
- 56.Stern B, Zhu X, Chen C P, Tzuang L D, Cardenas J, Bergman K, Lipson M. On-chip mode-division multiplexing switch. Optica, 2015, 2(6): 530–535CrossRefGoogle Scholar
- 57.Zhang Y, Zhu Q, He Y, Qiu C, Su Y, Soref R. Silicon 1 × 2 modeand polarization-selective switch. In: Proceedings of Optical Fiber Communication Conference. Optical Society of America, 2017, W4E.2Google Scholar
- 58.Winzer P, Gnauck A, Konczykowska A, Jorge F, Dupuy J Y. Penalties from in-band crosstalk for advanced optical modulation formats. In: Proceedings of 37th European Conference and Exposition on Optical Communications. ECOC, 2011, Tu.5.B.7Google Scholar
- 59.Ding Y, Xu J, Da Ros F, Huang B, Ou H, Peucheret C. On-chip twomode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer. Optics Express, 2013, 21(8): 10376–10382CrossRefGoogle Scholar
- 60.Downie J D, Ruffin A B. Analysis of signal distortion and crosstalk penalties induced by optical filters in optical networks. Journal of Lightwave Technology, 2003, 21(9): 1876–1886CrossRefGoogle Scholar
- 61.Poon A W, Luo X, Xu F, Chen H. Cascaded microresonator-based matrix switch for silicon on-chip optical interconnection. Proceedings of the IEEE, 2009, 97(7): 1216–1238CrossRefGoogle Scholar
- 62.Zhang Y, He Y, Zhu Q, Qiu C, Su Y. On-chip silicon photonic 2×2 mode- and polarization-selective switch with low inter-modal crosstalk. Photonics Research, 2017, 5(5): 521–526CrossRefGoogle Scholar
- 63.Fang Q, Song J F, Liow T Y, Cai H, Yu M B, Lo G Q, Kwong D L. Ultralow power silicon photonics thermo-optic switch with suspended phase arms. IEEE Photonics Technology Letters, 2011, 23(8): 525–527CrossRefGoogle Scholar
- 64.Zhu Q M, Zhang Y, He Y, An S H, Qiu C Y, Guo X H, Su Y K. Onchip switching of mode- and polarization-multiplexed signals with a 748-Gb/s/λ (8×93.5-Gb/s) capacity. In: Proceedings of CLEO, 2018, acceptedGoogle Scholar