Frontiers of Optoelectronics

, Volume 11, Issue 1, pp 30–36 | Cite as

Dipole-fiber system: from single photon source to metadevices

  • Shaghik Atakaramians
  • Tanya M. Monro
  • Shahraam Afshar V.
Review Article
  • 8 Downloads

Abstract

Radiation of an electric dipole (quantum emitter) in vicinity of optical structures still attracts great interest due to emerging of novel application and technological advances. Here we review our recent work on guided and radiation modes of electric dipole and optical fiber system and its applications from single photon source to metadevices. We demonstrate that the relative position and orientation of the dipole and the core diameter of the optical fiber are the two key defining factors of the coupled system application. We demonstrate that such a coupled system has a vast span of applications in nanophotonics; a single photon source, a high-quality factor sensor and the building block of metadevices.

Keywords

dipole source optical fibers single photon source whispering gallery modes electric and magnetic response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

S. Atakaramians acknowledges the support of Australian Research Council (ARC) under the Discovery Early Career Project Award number DE140100614. T. M. Monro acknowledges the support of ARC Georgina Sweet Laureate Fellowship.

References

  1. 1.
    Vahala K J. Optical microcavities. Nature, 2003, 424(6950): 839–846CrossRefGoogle Scholar
  2. 2.
    Afshar V S, Henderson M R, Greentree A D, Gibson B C, Monro T. MSelf-formed cavity quantum electrodynamics in coupled dipole cylindrical-waveguide systems. Optics Express, 2014, 22(9): 11301–11311CrossRefGoogle Scholar
  3. 3.
    Hall J M M, Reynolds T, Henderson M R, Riesen N, Monro T M, Afshar S. Unified theory of whispering gallery multilayer microspheres with single dipole or active layer sources. Optics Express, 2017, 25(6): 6192–6214CrossRefGoogle Scholar
  4. 4.
    Chew H, McNulty P J, Kerker M. Model for Raman and fluorescent scattering by molecules embedded in small particles. Physical Review A, 1976, 13(1): 396–404CrossRefGoogle Scholar
  5. 5.
    Arnold S, Khoshsima M, Teraoka I, Holler S, Vollmer F. Shift of whispering-gallery modes in microspheres by protein adsorption. Optics Letters, 2003, 28(4): 272–274CrossRefGoogle Scholar
  6. 6.
    Quan H, Guo Z. Simulation of whispering-gallery-mode resonance shifts for optical miniature biosensors. Journal of Quantitative Spectroscopy & Radiative Transfer, 2005, 93(1–3): 231–243CrossRefGoogle Scholar
  7. 7.
    Guo Z, Quan H, Pau S. Near-field gap effects on small microcavity whispering-gallery mode resonators. Journal of Physics D, Applied Physics, 2006, 39(24): 5133–5136CrossRefGoogle Scholar
  8. 8.
    Imakita K, Shibata H, Fujii M, Hayashi S. Numerical analysis on the feasibility of a multi-layered dielectric sphere as a three-dimensional photonic crystal. Optics Express, 2013, 21(9): 10651–10658CrossRefGoogle Scholar
  9. 9.
    Li M, Wu X, Liu L, Xu L. Kerr parametric oscillations and frequency comb generation from dispersion compensated silica micro-bubble resonators. Optics Express, 2013, 21(14): 16908–16913CrossRefGoogle Scholar
  10. 10.
    Farnesi D, Barucci A, Righini G C, Conti G N, Soria S. Generation of hyper-parametric oscillations in silica microbubbles. Optics Letters, 2015, 40(19): 4508–4511CrossRefGoogle Scholar
  11. 11.
    Ruan Z, Fan S. Superscattering of light from subwavelength nanostructures. Physical Review Letters, 2010, 105(1): 013901CrossRefGoogle Scholar
  12. 12.
    Agio M. Optical antennas as nanoscale resonators. Nanoscale, 2012, 4(3): 692–706CrossRefGoogle Scholar
  13. 13.
    Novotny L, van Hulst N. Antennas for light. Nature Photonics, 2011, 5(2): 83–90CrossRefGoogle Scholar
  14. 14.
    Bharadwaj P, Deutsch B, Novotny L. Optical antennas. Advances in Optics and Photonics, 2009, 1(3): 438–483CrossRefGoogle Scholar
  15. 15.
    Kivshar Y, Miroshnichenko A. Meta-optics with Mie resonances. Optics and Photonics News, 2017, 28(1): 24–31CrossRefGoogle Scholar
  16. 16.
    Zheludev N I, Kivshar Y S. From metamaterials to metadevices. Nature Materials, 2012, 11(11): 917–924CrossRefGoogle Scholar
  17. 17.
    Snyder A W, Love J. Optical Waveguide Theory. 1st ed. London: Chapman and Hall Ltd, 1983Google Scholar
  18. 18.
    Henderson M R, Afshar V. S, Greentree A D, Monro T M. Dipole emitters in fiber: interface effects, collection efficiency and optimization. Optics Express, 2011, 19(17): 16182–16194CrossRefGoogle Scholar
  19. 19.
    Henderson M R, Gibson B C, Ebendorff-Heidepriem H, Kuan K, Afshar V S, Orwa J O, Aharonovich I, Tomljenovic-Hanic S, Greentree A D, Prawer S, Monro T M. Diamond in tellurite glass: a new medium for quantum information. Advanced Materials, 2011, 23(25): 2806–2810CrossRefGoogle Scholar
  20. 20.
    Ebendorff-Heidepriem H, Ruan Y, Ji H, Greentree A D, Gibson B C, Monro T M. Nanodiamond in tellurite glass Part I: origin of loss in nanodiamond-doped glass. Optical Materials Express, 2014, 4 (12): 2608–2620CrossRefGoogle Scholar
  21. 21.
    Ruan Y, Ji H, Johnson B C, Ohshima T, Greentree A D, Gibson B C, Monro T M, Ebendorff-Heidepriem H. Nanodiamond in tellurite glass Part II: practical nanodiamond-doped fibers. Optical Materials Express, 2015, 5(1): 73–87CrossRefGoogle Scholar
  22. 22.
    Atakaramians S, Miroshnichenko A E, Shadrivov I V, Mirzaei A, Monro T M. Kivshar Y S, Afshar V S. Strong magnetic response of optical nanofibers. ACS Photonics, 2016, 3(6): 972–978CrossRefGoogle Scholar
  23. 23.
    Atakaramians S, Miroshnichenko A E, Shadrivov I V, Monro T M. Kivshar Y S, Afshar V. S. Dipole-fiber systems: radiation field patterns, effective magnetic dipoles, and induced cavity modes. In: Proceedings of SPIE 9668, Micro + Nano Materials, Devices, and Systems, 2015, 96683JGoogle Scholar
  24. 24.
    Fussell D P, McPhedran R C, Martijn de Sterke C. Decay rate and level shift in a circular dielectric waveguide. Physical Review A, 2005, 71(1): 013815CrossRefGoogle Scholar
  25. 25.
    Jackson J. Classical Electrodynamics. 3rd ed. New York: John Wiley & Sons, Inc., 1998MATHGoogle Scholar
  26. 26.
    Grahn P, Shevchenko A, Kaivola M. Electromagnetic multipole theory for optical nanomaterials. New Journal of Physics, 2012, 14 (9): 093033CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Shaghik Atakaramians
    • 1
  • Tanya M. Monro
    • 2
    • 3
  • Shahraam Afshar V.
    • 2
    • 3
  1. 1.School of Electrical Engineering and TelecommunicationsThe University of New South WalesSydneyAustralia
  2. 2.Institute for Photonics and Advanced SensingThe University of AdelaideAdelaideAustralia
  3. 3.Laser Physics and Photonic Devices Laboratories, School of EngineeringUniversity of South AustraliaMawson LakesAustralia

Personalised recommendations