Plasma characteristics of energetic liquid polymer ablated by nanosecond laser pulses

  • Jing Qi
  • Siqi Zhang
  • Tian Liang
  • Weichong Tang
  • Ke Xiao
  • Lu Gao
  • Hua Gao
  • Zili Zhang
  • Zhiyuan Zheng
Research Article

Abstract

The plasma characteristics of carbon-doped glycidyl azide polymer (GAP) are investigated ablation by nanosecond laser pulses. For the GAP energetic liquid, a specific impulse of 840 s and an ablation efficiency up to 98% are obtained, which can be attributed to the low mass loss owing to the carbon doping. A comparison between the chemical energies shows that the carbon-doped GAP provides better propulsion than pure GAP. This indicates that even for an energetic liquid, an efficient approach to enhance the thrust performance is to reduce the splashing. High ablation thrust could be achieved at a low laser fluence and high carbon content.

Keywords

laser plasma energetic liquid carbon content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project was supported by the Fundamental Research Funds for the Central Universities of China (Nos. 53200859165, 2562010050), and by the National Natural Science Foundation of China (Grant No. 11504337).

References

  1. 1.
    Luke J R, Phipps C R, McDuff G G. Laser plasma thruster. Applied Physics A, Materials Science & Processing, 2003, 77(2): 343–348Google Scholar
  2. 2.
    Ahmad M R, Jamil Y, Saeed H, Hussain T. A new perspective of ablative pulsed laser propulsion: study on different morphologies of nano-structured ZnO. Laser Physics Letters, 2015, 12(5): 056101CrossRefGoogle Scholar
  3. 3.
    Fardel R, Urech L, Lippert T, Phipps C, Fitz-gerald J M, Wokaun A. Laser ablation of energetic polymer solutions: effect of viscosity and fluence on the splashing behavior. Applied Physics A, Materials Science & Processing, 2009, 94(3): 657–665CrossRefGoogle Scholar
  4. 4.
    Phipps C, Luke J, Lippert T, Hauer M, Wokaun A. Micropropulsion using a laser ablation jet. Journal of Propulsion and Power, 2004, 20 (6): 1000–1011CrossRefGoogle Scholar
  5. 5.
    Zheng Z Y, Zhang J, Zhang Y, Liu F, Chen M, Lu X, Li Y T. Enhancement of coupling coefficient of laser plasma propulsion by water confinement. Applied Physics A, Materials Science & Processing, 2006, 85(4): 441–443CrossRefGoogle Scholar
  6. 6.
    Zheng Z Y, Zhang S Q, Liang T, Gao L, Gao H, Zhang Z L. Characteristics of droplets ejected from liquid glycerol doped with carbon in laser ablation propulsion. Chinese Physics B, 2016, 25(4): 045204CrossRefGoogle Scholar
  7. 7.
    Zheng Z Y, Liang T, Zhang S Q, Gao L, Gao H, Zhang Z L. Ablation of carbon-doped liquid propellant in laser plasma propulsion. Applied Physics A, Materials Science & Processing, 2016, 122(4): 317CrossRefGoogle Scholar
  8. 8.
    Fardel R, Urech L, Lippert T, Phipps C, Fitz-gerald J M, Wokaun A. Laser ablation of energetic polymer solutions: effect of viscosity and fluence on the splashing behavior. Applied Physics A, Materials Science & Processing, 2009, 94(3): 657–665CrossRefGoogle Scholar
  9. 9.
    Urech L, Lippert T, Phipps C R, Wokaun A. Polymer ablation: from fundamentals of polymer design to laser plasma thruster. Applied Surface Science, 2007, 253(15): 6409–6415CrossRefGoogle Scholar
  10. 10.
    Wang X Y, Wu L Z, Guo N, He N B, Shen R Q, Ye Y H. Preliminary study for effects of laser pulse width on propulsion performance of gap propellant doped with carbon. Journal of Propulsion Technology, 2016, 37(4): 788–792Google Scholar
  11. 11.
    Xue Y T, Dou Z G, Ye J F, Li N L, Zhang G Z, Wan Y. Experimental study on influence of splashing behavior on mechanical effects. High Power Laser and Particle Beams, 2014, 26(10): 101020CrossRefGoogle Scholar
  12. 12.
    Zheng Z Y, Gao H, Gao L, Xing J, Fan Z J, Dong A G, Zhang Z L. Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film. Applied Physics A, Materials Science & Processing, 2014, 115(4): 1439–1443CrossRefGoogle Scholar
  13. 13.
    Choi S, Han T, Gojani A B, Yoh J J. Thrust enhancement via geltype liquid confinement of laser ablation of solid metal propellant. Applied Physics A, Materials Science & Processing, 2010, 98(1): 147–151CrossRefGoogle Scholar
  14. 14.
    Phipps C R, Luke J K, Lippert T, Hauer M, Wokaun A. Micropropulsion using laser ablation. Applied Physics A, Materials Science & Processing, 2004, 79(4–6): 1385–1389CrossRefGoogle Scholar
  15. 15.
    Sinko J E, Phipps C R. Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes. Applied Physics Letters, 2009, 95(13): 131105CrossRefGoogle Scholar
  16. 16.
    Phipps C, Birkan M, Bohn W, Eckel H A, Horisawa H, Lippert T, Michaelis M, Rezunkov Y, Sasoh A, Schall W, Scharring S, Sinko J. Review: laser-ablation propulsion. Journal of Propulsion and Power, 2010, 26(4): 609–637CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jing Qi
    • 1
  • Siqi Zhang
    • 1
  • Tian Liang
    • 1
  • Weichong Tang
    • 1
  • Ke Xiao
    • 1
  • Lu Gao
    • 1
  • Hua Gao
    • 1
  • Zili Zhang
    • 1
  • Zhiyuan Zheng
    • 1
  1. 1.School of ScienceChina University of GeosciencesBeijingChina

Personalised recommendations