Advertisement

Frontiers of Optoelectronics

, Volume 11, Issue 1, pp 2–22 | Cite as

Two-dimensional material functional devices enabled by direct laser fabrication

  • Tieshan Yang
  • Han Lin
  • Baohua Jia
Review Article
  • 117 Downloads

Abstract

During the past decades, atomically thin, twodimensional (2D) layered materials have attracted tremendous research interest on both fundamental properties and practical applications because of their extraordinary mechanical, thermal, electrical and optical properties, which are distinct from their counterparts in the bulk format. Various fabrication methods, such as soft-lithography, screen-printing, colloidal-templating and chemical/ dry etching have been developed to fabricate micro/ nanostructures in 2D materials. Direct laser fabrication with the advantages of unique three-dimensional (3D) processing capability, arbitrary-shape designability and high fabrication accuracy up to tens of nanometers, which is far beyond the optical diffraction limit, has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices. This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics, optoelectronics, and electrochemical energy storage devices. The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.

Keywords

two-dimensional (2D) materials direct laser fabrication laser thinning laser doping photonics and optoelectronics devices electrochemical energy storage 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

Baohua Jia acknowledges the support from the Australia Research Council through the Discovery Project scheme (DP150102972) and the support from Defense Science Institute and Defense Science and Technology Group.

References

  1. 1.
    Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469CrossRefGoogle Scholar
  2. 2.
    Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K, Zhang Y, Li S, Zhang H, Bao Q. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27(46): 462001CrossRefGoogle Scholar
  3. 3.
    Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907CrossRefGoogle Scholar
  4. 4.
    Brar V W, Koltonow A R, Huang J X. New discoveries and opportunities from two-dimensional Materials. ACS Photonics, 2017, 4(3): 407–411CrossRefGoogle Scholar
  5. 5.
    Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200CrossRefGoogle Scholar
  6. 6.
    Zhang Y B, Rubio A, Lay G L. Emergent elemental twodimensional materials beyond graphene. Journal of Physics. D, Applied Physics, 2017, 50(5): 053004CrossRefGoogle Scholar
  7. 7.
    Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A. Recent advances in two-dimensional materials beyond Graphene. ACS Nano, 2015, 9(12): 11509–11539CrossRefGoogle Scholar
  8. 8.
    Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534CrossRefGoogle Scholar
  9. 9.
    Bonaccorso F, Sun Z P, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622CrossRefGoogle Scholar
  10. 10.
    Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10(4): 216–226CrossRefGoogle Scholar
  11. 11.
    Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458Google Scholar
  12. 12.
    Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. The Journal of Physical Chemistry Letters, 2015, 6 (21): 4280–4291CrossRefGoogle Scholar
  13. 13.
    Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521CrossRefGoogle Scholar
  14. 14.
    Huo C X, Cai B, Yuan Z, Ma B W, Zeng H B. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017, 1(3): 1600018CrossRefGoogle Scholar
  15. 15.
    Chen S, Shi G. Two-dimensional materials for halide perovskitebased optoelectronic devices. Advanced Materials, 2017, 29(24): 1605448CrossRefGoogle Scholar
  16. 16.
    Choi D G, Jeong J H, Sim Y S, Lee E S, Kim W S, Bae B S. Fluorinated organic-inorganic hybrid mold as a new stamp for nanoimprint and soft lithography. Langmuir, 2005, 21(21): 9390–9392CrossRefGoogle Scholar
  17. 17.
    Pardo D A, Jabbour G E, Peyghambarian N. Application of screen printing in the fabrication of organic light-emitting devices. Advanced Materials, 2000, 12(17): 1249–1252CrossRefGoogle Scholar
  18. 18.
    Caruso F. Hollow capsule processing through colloidal templating and self-assembly. Chemistry (Weinheim an der Bergstrasse, Germany), 2000, 6(3): 413–419Google Scholar
  19. 19.
    Zhang J C, Zhou M J, Wu W D, Tang Y J. Fabrication of diamond microstructures by using dry and wet etching methods. Plasma Science & Technology, 2013, 15(6): 552–554CrossRefGoogle Scholar
  20. 20.
    Zhang Y L, Guo L, Wei S, He Y Y, Xia H, Chen Q D, Sun H B, Xiao F S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20CrossRefGoogle Scholar
  21. 21.
    Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448CrossRefGoogle Scholar
  22. 22.
    Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. Journal of Physics D, Applied Physics, 2017, 50(7): 074003CrossRefGoogle Scholar
  23. 23.
    Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128CrossRefGoogle Scholar
  24. 24.
    Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238CrossRefGoogle Scholar
  25. 25.
    Wang F Q. Two-dimensional materials for ultrafast lasers. Chinese Physics B, 2017, 26(3): 034202CrossRefGoogle Scholar
  26. 26.
    Yoo J H, Kim E, Hwang D J. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials. MRS Bulletin, 2016, 41(12): 1002–1008CrossRefGoogle Scholar
  27. 27.
    Li Z W, Hu Y H, Li Y, Fang Z Y. Light-matter interaction of 2D materials: physics and device applications. Chinese Physics B, 2017, 26(3): 036802CrossRefGoogle Scholar
  28. 28.
    Ye M X, Zhang D Y, Yap Y K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6(2): 43Google Scholar
  29. 29.
    Zhao Y, Han Q, Cheng Z H, Jiang L, Qu L T. Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12: 14–30CrossRefGoogle Scholar
  30. 30.
    Lu J, Liu H, Tok E S, Sow C H. Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45(9): 2494–2515CrossRefGoogle Scholar
  31. 31.
    Xiong W, Zhou Y S, Hou WJ, Jiang L J, Mahjouri-Samani M, Park J, He X N, Gao Y, Fan L S, Baldacchini T, Silvanin J F, Lu Y F. Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics, 2015, 8(4): 351–378CrossRefGoogle Scholar
  32. 32.
    Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4(1): 4892CrossRefGoogle Scholar
  33. 33.
    Zhang Y L, Guo L, Xia H, Chen Q D, Feng J, Sun H B. Photoreduction of graphene oxides: methods, properties, and applications. Advanced Optical Materials, 2014, 2(1): 10–28CrossRefGoogle Scholar
  34. 34.
    Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 2009, 131(31): 11027–11032CrossRefGoogle Scholar
  35. 35.
    Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S A, Kaner R B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 2010, 22(3): 419–423CrossRefGoogle Scholar
  36. 36.
    Koinuma M, Ogata C, Kamei Y, Hatakeyama K, Tateishi H, Watanabe Y, Taniguchi T, Gezuhara K, Hayami S, Funatsu A, Sakata M, Kuwahara Y, Kurihara S, Matsumoto Y. Photochemical engineering of graphene oxide nanosheets. Journal of Physical Chemistry C, 2012, 116(37): 19822–19827CrossRefGoogle Scholar
  37. 37.
    Li X H, Chen J S, Wang X, Schuster M E, Schlögl R, Antonietti M. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem, 2012, 5(4): 642–646CrossRefGoogle Scholar
  38. 38.
    Stroyuk A L, Andryushina N S, Shcherban’ N D, Il’in V G, Efanov V S, Yanchuk I B, Kuchmii S Y, Pokhodenko V D. Photochemical reduction of graphene oxide in colloidal solution. Theoretical and Experimental Chemistry, 2012, 48(1): 2–13CrossRefGoogle Scholar
  39. 39.
    Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J, Steele G A. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Letters, 2012, 12 (6): 3187–3192CrossRefGoogle Scholar
  40. 40.
    Han G H, Chae S J, Kim E S, Güneş F, Lee I H, Lee S W, Lee S Y, Lim S C, Jeong H K, Jeong M S, Lee Y H. Laser thinning for monolayer graphene formation: heat sink and interference effect. ACS Nano, 2011, 5(1): 263–268CrossRefGoogle Scholar
  41. 41.
    Lu J, Carvalho A, Chan X K, Liu H, Liu B, Tok E S, Loh K P, Castro Neto A H, Sow C H. Atomic healing of defects in transition metal dichalcogenides. Nano Letters, 2015, 15(5): 3524–3532CrossRefGoogle Scholar
  42. 42.
    Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625–628CrossRefGoogle Scholar
  43. 43.
    Lu J,Wu J, Carvalho A, Ziletti A, Liu H, Tan J, Chen Y, Castro Neto A H, Özyilmaz B, Sow C H. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano, 2015, 9(10): 10411–10421CrossRefGoogle Scholar
  44. 44.
    Guo L, Zhang Y L, Han D D, Jiang H B, Wang D, Li X B, Xia H, Feng J, Chen Q D, Sun H B. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125CrossRefGoogle Scholar
  45. 45.
    Savva K, Lin Y H, Petridis C, Kymakis E, Anthopoulos T D, Stratakis E. In situ photo-induced chemical doping of solutionprocessed graphene oxide for electronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(29): 5931–5937CrossRefGoogle Scholar
  46. 46.
    Kim E, Ko C, Kim K, Chen Y, Suh J, Ryu S G, Wu K, Meng X, Suslu A, Tongay S, Wu J, Grigoropoulos C P. Site selective doping of ultrathin metal dichalcogenides by laser-sssisted reaction. Advanced Materials, 2016, 28(2): 341–346CrossRefGoogle Scholar
  47. 47.
    Zhang Y L, Xia H, Kim E, Sun H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8(44): 11217–11231CrossRefGoogle Scholar
  48. 48.
    Jiang H B, Zhang Y L, Han D D, Xia H, Feng J, Chen Q D, Hong Z R, Sun H B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Advanced Functional Materials, 2014, 24(29): 4595–4602CrossRefGoogle Scholar
  49. 49.
    Xie Q, Hong M H, Tan H L, Chen G X, Shi L P, Chong T C. Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 2008, 449(1–2): 261–264CrossRefGoogle Scholar
  50. 50.
    Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications, 2015, 6: 8433CrossRefGoogle Scholar
  51. 51.
    Lin H, Xu Z Q, Bao Q L, Jia B H. Laser fabricated ultrathin flat lens in sub-nanometer thick monolayer transition metal dichalcogenides crystal. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2016, SF2E.4, 1–2Google Scholar
  52. 52.
    Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150CrossRefGoogle Scholar
  53. 53.
    Zheng X R. The optics and applications of graphene oxide. Dissertation for the Doctoral Degree. Australia: Swinburne University of Technology, 2016Google Scholar
  54. 54.
    Zheng X R, Cao Z, Jia B H, Qiu L, Li D, Gu M. Direct patterning of C-shape arrays on graphene oxide thin films using direct laser printing. In: Proceedings of Frontiers in Optics 2014. Tucson, Arizona: Optical Society of America, FW2BGoogle Scholar
  55. 55.
    Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415CrossRefGoogle Scholar
  56. 56.
    Jia B H, Zheng X R, Lin H, Yang Y Y, Fraser S. Graphene oxide thin films for functional photonic devices. In: Proceedings of Frontiers in Optics 2016. Rochester, New York: Optical Society of America, FTu5B.4Google Scholar
  57. 57.
    Kim Y D, Bae M H, Seo J T, Kim Y S, Kim H, Lee J H, Ahn J R, Lee S W, Chun S H, Park Y D. Focused-laser-enabled p-n junctions in graphene field-effect transistors. ACS Nano, 2013, 7(7): 5850–5857CrossRefGoogle Scholar
  58. 58.
    El-Kady M F, Kaner R B. Direct laser writing of graphene electronics. ACS Nano, 2014, 8(9): 8725–8729CrossRefGoogle Scholar
  59. 59.
    Seo B H, Youn J, Shim M. Direct laser writing of air-stable p-n junctions in graphene. ACS Nano, 2014, 8(9): 8831–8836CrossRefGoogle Scholar
  60. 60.
    Kymakis E, Petridis C, Anthopoulos T D, Stratakis E. Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (1): 106–115CrossRefGoogle Scholar
  61. 61.
    Kymakis E, Savva K, Stylianakis M M, Fotakis C, Stratakis E. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Advanced Functional Materials, 2013, 23(21): 2742–2749CrossRefGoogle Scholar
  62. 62.
    Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137 (24): 7843–7850CrossRefGoogle Scholar
  63. 63.
    Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316CrossRefGoogle Scholar
  64. 64.
    Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room temperature polariton lasing in allinorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988CrossRefGoogle Scholar
  65. 65.
    Kanaujia P K, Vijaya Prakash G. Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites. Physical Chemistry Chemical Physics, 2016, 18(14): 9666–9672CrossRefGoogle Scholar
  66. 66.
    Chou S S, Swartzentruber B S, Janish MT, Meyer K C, Biedermann L B, Okur S, Burckel D B, Carter C B, Kaehr B. Laser direct write synthesis of lead halide perovskites. The Journal of Physical Chemistry Letters, 2016, 7(19): 3736–3741CrossRefGoogle Scholar
  67. 67.
    Zheng X, Jia B, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Advanced Materials, 2014, 26(17): 2699–2703CrossRefGoogle Scholar
  68. 68.
    Fraser S, Zheng X R, Qiu L, Li D, Jia B H. Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Applied Physics Letters, 2015, 107(3): 031112CrossRefGoogle Scholar
  69. 69.
    Ren J, Zheng X R, Tian Z, Li D, Wang P, Jia B H. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Applied Physics Letters, 2016, 109(22): 221105CrossRefGoogle Scholar
  70. 70.
    Thangavelu P, Jong-Beom B. Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2: 032002CrossRefGoogle Scholar
  71. 71.
    Dong Y, Wu Z S, Ren W C, Cheng H M, Bao X H. Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin, 2017, 62(10): 724–740CrossRefGoogle Scholar
  72. 72.
    Shao Y, El-Kady M F, Wang L J, Zhang Q, Li Y, Wang H, Mousavi M F, Kaner R B. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44(11): 3639–3665CrossRefGoogle Scholar
  73. 73.
    Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14(3): 271–279CrossRefGoogle Scholar
  74. 74.
    Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2: 107–138CrossRefGoogle Scholar
  75. 75.
    Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534–537CrossRefGoogle Scholar
  76. 76.
    El-Kady MF, Strong V, Dubin S, Kaner R B. Laser scribing of highperformance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326–1330CrossRefGoogle Scholar
  77. 77.
    El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4: 1475CrossRefGoogle Scholar
  78. 78.
    Gao W, Singh N, Song L, Liu Z, Reddy A L M, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan P M. Direct laser writing of microsupercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6(8): 496–500CrossRefGoogle Scholar
  79. 79.
    Yan Z X, Zhang Y L, Wang W, Fu X Y, Jiang H B, Liu Y Q, Verma P, Kawata S, Sun H B. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by twobeam laser interference. ACS Applied Materials & Interfaces, 2015, 7(49): 27059–27065CrossRefGoogle Scholar
  80. 80.
    Wan X, Huang Y, Chen Y. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Accounts of Chemical Research, 2012, 45(4): 598–607CrossRefGoogle Scholar
  81. 81.
    Ding X, Liu H, Fan Y. Graphene-based materials in regenerative medicine. Advanced Healthcare Materials, 2015, 4(10): 1451–1468CrossRefGoogle Scholar
  82. 82.
    Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8(4): 1897–1904CrossRefGoogle Scholar
  83. 83.
    Lorenzoni M, Brandi F, Dante S, Giugni A, Torre B. Simple and effective graphene laser processing for neuron patterning application. Scientific Reports, 2013, 3(1): 1954CrossRefGoogle Scholar
  84. 84.
    Peláez R J, González-Mayorga A, Gutiérrez M C, García-Rama C, Afonso C N, Serrano M C. Tailored fringed platforms produced by laser interference for aligned neural cell growth. Macromolecular Bioscience, 2016, 16(2): 255–265CrossRefGoogle Scholar
  85. 85.
    Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017, 29(1): 1603276CrossRefGoogle Scholar
  86. 86.
    Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530CrossRefGoogle Scholar
  87. 87.
    Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H, Chu P K. Biodegradable black phosphorusbased nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7: 12967CrossRefGoogle Scholar
  88. 88.
    Gan Z, Cao Y, Evans R A, Gu M. Three-dimensional deep subdiffraction optical beam lithography with 9 nm feature size. Nature Communications, 2013, 4: 2061Google Scholar
  89. 89.
    Lin H, Jia B, Gu M. Dynamic generation of Debye diffractionlimited multifocal arrays for direct laser printing nanofabrication. Optics Letters, 2011, 36(3): 406–408CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Centre for Micro-Photonics, Faculty of Science, Engineering and TechnologySwinburne University of TechnologyHawthornAustralia

Personalised recommendations