Skip to main content
Log in

Two-dimensional material functional devices enabled by direct laser fabrication

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

During the past decades, atomically thin, twodimensional (2D) layered materials have attracted tremendous research interest on both fundamental properties and practical applications because of their extraordinary mechanical, thermal, electrical and optical properties, which are distinct from their counterparts in the bulk format. Various fabrication methods, such as soft-lithography, screen-printing, colloidal-templating and chemical/ dry etching have been developed to fabricate micro/ nanostructures in 2D materials. Direct laser fabrication with the advantages of unique three-dimensional (3D) processing capability, arbitrary-shape designability and high fabrication accuracy up to tens of nanometers, which is far beyond the optical diffraction limit, has been widely studied and applied in the fabrication of various micro/ nanostructures of 2D materials for functional devices. This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics, optoelectronics, and electrochemical energy storage devices. The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469

    Article  Google Scholar 

  2. Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K, Zhang Y, Li S, Zhang H, Bao Q. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27(46): 462001

    Article  Google Scholar 

  3. Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Twodimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907

    Article  Google Scholar 

  4. Brar V W, Koltonow A R, Huang J X. New discoveries and opportunities from two-dimensional Materials. ACS Photonics, 2017, 4(3): 407–411

    Article  Google Scholar 

  5. Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200

    Article  Google Scholar 

  6. Zhang Y B, Rubio A, Lay G L. Emergent elemental twodimensional materials beyond graphene. Journal of Physics. D, Applied Physics, 2017, 50(5): 053004

    Article  Google Scholar 

  7. Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano MS, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A. Recent advances in two-dimensional materials beyond Graphene. ACS Nano, 2015, 9(12): 11509–11539

    Article  Google Scholar 

  8. Geim A K. Graphene: status and prospects. Science, 2009, 324 (5934): 1530–1534

    Article  Google Scholar 

  9. Bonaccorso F, Sun Z P, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622

    Article  Google Scholar 

  10. Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10(4): 216–226

    Article  Google Scholar 

  11. Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458

    Google Scholar 

  12. Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. The Journal of Physical Chemistry Letters, 2015, 6 (21): 4280–4291

    Article  Google Scholar 

  13. Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521

    Article  Google Scholar 

  14. Huo C X, Cai B, Yuan Z, Ma B W, Zeng H B. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017, 1(3): 1600018

    Article  Google Scholar 

  15. Chen S, Shi G. Two-dimensional materials for halide perovskitebased optoelectronic devices. Advanced Materials, 2017, 29(24): 1605448

    Article  Google Scholar 

  16. Choi D G, Jeong J H, Sim Y S, Lee E S, Kim W S, Bae B S. Fluorinated organic-inorganic hybrid mold as a new stamp for nanoimprint and soft lithography. Langmuir, 2005, 21(21): 9390–9392

    Article  Google Scholar 

  17. Pardo D A, Jabbour G E, Peyghambarian N. Application of screen printing in the fabrication of organic light-emitting devices. Advanced Materials, 2000, 12(17): 1249–1252

    Article  Google Scholar 

  18. Caruso F. Hollow capsule processing through colloidal templating and self-assembly. Chemistry (Weinheim an der Bergstrasse, Germany), 2000, 6(3): 413–419

    Google Scholar 

  19. Zhang J C, Zhou M J, Wu W D, Tang Y J. Fabrication of diamond microstructures by using dry and wet etching methods. Plasma Science & Technology, 2013, 15(6): 552–554

    Article  Google Scholar 

  20. Zhang Y L, Guo L, Wei S, He Y Y, Xia H, Chen Q D, Sun H B, Xiao F S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20

    Article  Google Scholar 

  21. Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448

    Article  Google Scholar 

  22. Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. Journal of Physics D, Applied Physics, 2017, 50(7): 074003

    Article  Google Scholar 

  23. Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128

    Article  Google Scholar 

  24. Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238

    Article  Google Scholar 

  25. Wang F Q. Two-dimensional materials for ultrafast lasers. Chinese Physics B, 2017, 26(3): 034202

    Article  Google Scholar 

  26. Yoo J H, Kim E, Hwang D J. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials. MRS Bulletin, 2016, 41(12): 1002–1008

    Article  Google Scholar 

  27. Li Z W, Hu Y H, Li Y, Fang Z Y. Light-matter interaction of 2D materials: physics and device applications. Chinese Physics B, 2017, 26(3): 036802

    Article  Google Scholar 

  28. Ye M X, Zhang D Y, Yap Y K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6(2): 43

    Google Scholar 

  29. Zhao Y, Han Q, Cheng Z H, Jiang L, Qu L T. Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12: 14–30

    Article  Google Scholar 

  30. Lu J, Liu H, Tok E S, Sow C H. Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45(9): 2494–2515

    Article  Google Scholar 

  31. Xiong W, Zhou Y S, Hou WJ, Jiang L J, Mahjouri-Samani M, Park J, He X N, Gao Y, Fan L S, Baldacchini T, Silvanin J F, Lu Y F. Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics, 2015, 8(4): 351–378

    Article  Google Scholar 

  32. Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4(1): 4892

    Article  Google Scholar 

  33. Zhang Y L, Guo L, Xia H, Chen Q D, Feng J, Sun H B. Photoreduction of graphene oxides: methods, properties, and applications. Advanced Optical Materials, 2014, 2(1): 10–28

    Article  Google Scholar 

  34. Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 2009, 131(31): 11027–11032

    Article  Google Scholar 

  35. Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S A, Kaner R B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 2010, 22(3): 419–423

    Article  Google Scholar 

  36. Koinuma M, Ogata C, Kamei Y, Hatakeyama K, Tateishi H, Watanabe Y, Taniguchi T, Gezuhara K, Hayami S, Funatsu A, Sakata M, Kuwahara Y, Kurihara S, Matsumoto Y. Photochemical engineering of graphene oxide nanosheets. Journal of Physical Chemistry C, 2012, 116(37): 19822–19827

    Article  Google Scholar 

  37. Li X H, Chen J S, Wang X, Schuster M E, Schlögl R, Antonietti M. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem, 2012, 5(4): 642–646

    Article  Google Scholar 

  38. Stroyuk A L, Andryushina N S, Shcherban’ N D, Il’in V G, Efanov V S, Yanchuk I B, Kuchmii S Y, Pokhodenko V D. Photochemical reduction of graphene oxide in colloidal solution. Theoretical and Experimental Chemistry, 2012, 48(1): 2–13

    Article  Google Scholar 

  39. Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J, Steele G A. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Letters, 2012, 12 (6): 3187–3192

    Article  Google Scholar 

  40. Han G H, Chae S J, Kim E S, Güneş F, Lee I H, Lee S W, Lee S Y, Lim S C, Jeong H K, Jeong M S, Lee Y H. Laser thinning for monolayer graphene formation: heat sink and interference effect. ACS Nano, 2011, 5(1): 263–268

    Article  Google Scholar 

  41. Lu J, Carvalho A, Chan X K, Liu H, Liu B, Tok E S, Loh K P, Castro Neto A H, Sow C H. Atomic healing of defects in transition metal dichalcogenides. Nano Letters, 2015, 15(5): 3524–3532

    Article  Google Scholar 

  42. Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625–628

    Article  Google Scholar 

  43. Lu J,Wu J, Carvalho A, Ziletti A, Liu H, Tan J, Chen Y, Castro Neto A H, Özyilmaz B, Sow C H. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano, 2015, 9(10): 10411–10421

    Article  Google Scholar 

  44. Guo L, Zhang Y L, Han D D, Jiang H B, Wang D, Li X B, Xia H, Feng J, Chen Q D, Sun H B. Laser-mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125

    Article  Google Scholar 

  45. Savva K, Lin Y H, Petridis C, Kymakis E, Anthopoulos T D, Stratakis E. In situ photo-induced chemical doping of solutionprocessed graphene oxide for electronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(29): 5931–5937

    Article  Google Scholar 

  46. Kim E, Ko C, Kim K, Chen Y, Suh J, Ryu S G, Wu K, Meng X, Suslu A, Tongay S, Wu J, Grigoropoulos C P. Site selective doping of ultrathin metal dichalcogenides by laser-sssisted reaction. Advanced Materials, 2016, 28(2): 341–346

    Article  Google Scholar 

  47. Zhang Y L, Xia H, Kim E, Sun H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8(44): 11217–11231

    Article  Google Scholar 

  48. Jiang H B, Zhang Y L, Han D D, Xia H, Feng J, Chen Q D, Hong Z R, Sun H B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Advanced Functional Materials, 2014, 24(29): 4595–4602

    Article  Google Scholar 

  49. Xie Q, Hong M H, Tan H L, Chen G X, Shi L P, Chong T C. Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 2008, 449(1–2): 261–264

    Article  Google Scholar 

  50. Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications, 2015, 6: 8433

    Article  Google Scholar 

  51. Lin H, Xu Z Q, Bao Q L, Jia B H. Laser fabricated ultrathin flat lens in sub-nanometer thick monolayer transition metal dichalcogenides crystal. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2016, SF2E.4, 1–2

    Google Scholar 

  52. Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150

    Article  Google Scholar 

  53. Zheng X R. The optics and applications of graphene oxide. Dissertation for the Doctoral Degree. Australia: Swinburne University of Technology, 2016

    Google Scholar 

  54. Zheng X R, Cao Z, Jia B H, Qiu L, Li D, Gu M. Direct patterning of C-shape arrays on graphene oxide thin films using direct laser printing. In: Proceedings of Frontiers in Optics 2014. Tucson, Arizona: Optical Society of America, FW2B

    Google Scholar 

  55. Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415

    Article  Google Scholar 

  56. Jia B H, Zheng X R, Lin H, Yang Y Y, Fraser S. Graphene oxide thin films for functional photonic devices. In: Proceedings of Frontiers in Optics 2016. Rochester, New York: Optical Society of America, FTu5B.4

  57. Kim Y D, Bae M H, Seo J T, Kim Y S, Kim H, Lee J H, Ahn J R, Lee S W, Chun S H, Park Y D. Focused-laser-enabled p-n junctions in graphene field-effect transistors. ACS Nano, 2013, 7(7): 5850–5857

    Article  Google Scholar 

  58. El-Kady M F, Kaner R B. Direct laser writing of graphene electronics. ACS Nano, 2014, 8(9): 8725–8729

    Article  Google Scholar 

  59. Seo B H, Youn J, Shim M. Direct laser writing of air-stable p-n junctions in graphene. ACS Nano, 2014, 8(9): 8831–8836

    Article  Google Scholar 

  60. Kymakis E, Petridis C, Anthopoulos T D, Stratakis E. Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20 (1): 106–115

    Article  Google Scholar 

  61. Kymakis E, Savva K, Stylianakis M M, Fotakis C, Stratakis E. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Advanced Functional Materials, 2013, 23(21): 2742–2749

    Article  Google Scholar 

  62. Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis MG. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137 (24): 7843–7850

    Article  Google Scholar 

  63. Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency twodimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316

    Article  Google Scholar 

  64. Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room temperature polariton lasing in allinorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988

    Article  Google Scholar 

  65. Kanaujia P K, Vijaya Prakash G. Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites. Physical Chemistry Chemical Physics, 2016, 18(14): 9666–9672

    Article  Google Scholar 

  66. Chou S S, Swartzentruber B S, Janish MT, Meyer K C, Biedermann L B, Okur S, Burckel D B, Carter C B, Kaehr B. Laser direct write synthesis of lead halide perovskites. The Journal of Physical Chemistry Letters, 2016, 7(19): 3736–3741

    Article  Google Scholar 

  67. Zheng X, Jia B, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Advanced Materials, 2014, 26(17): 2699–2703

    Article  Google Scholar 

  68. Fraser S, Zheng X R, Qiu L, Li D, Jia B H. Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Applied Physics Letters, 2015, 107(3): 031112

    Article  Google Scholar 

  69. Ren J, Zheng X R, Tian Z, Li D, Wang P, Jia B H. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Applied Physics Letters, 2016, 109(22): 221105

    Article  Google Scholar 

  70. Thangavelu P, Jong-Beom B. Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2: 032002

    Article  Google Scholar 

  71. Dong Y, Wu Z S, Ren W C, Cheng H M, Bao X H. Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin, 2017, 62(10): 724–740

    Article  Google Scholar 

  72. Shao Y, El-Kady M F, Wang L J, Zhang Q, Li Y, Wang H, Mousavi M F, Kaner R B. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44(11): 3639–3665

    Article  Google Scholar 

  73. Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14(3): 271–279

    Article  Google Scholar 

  74. Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2: 107–138

    Article  Google Scholar 

  75. Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534–537

    Article  Google Scholar 

  76. El-Kady MF, Strong V, Dubin S, Kaner R B. Laser scribing of highperformance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326–1330

    Article  Google Scholar 

  77. El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4: 1475

    Article  Google Scholar 

  78. Gao W, Singh N, Song L, Liu Z, Reddy A L M, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan P M. Direct laser writing of microsupercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6(8): 496–500

    Article  Google Scholar 

  79. Yan Z X, Zhang Y L, Wang W, Fu X Y, Jiang H B, Liu Y Q, Verma P, Kawata S, Sun H B. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by twobeam laser interference. ACS Applied Materials & Interfaces, 2015, 7(49): 27059–27065

    Article  Google Scholar 

  80. Wan X, Huang Y, Chen Y. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Accounts of Chemical Research, 2012, 45(4): 598–607

    Article  Google Scholar 

  81. Ding X, Liu H, Fan Y. Graphene-based materials in regenerative medicine. Advanced Healthcare Materials, 2015, 4(10): 1451–1468

    Article  Google Scholar 

  82. Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8(4): 1897–1904

    Article  Google Scholar 

  83. Lorenzoni M, Brandi F, Dante S, Giugni A, Torre B. Simple and effective graphene laser processing for neuron patterning application. Scientific Reports, 2013, 3(1): 1954

    Article  Google Scholar 

  84. Peláez R J, González-Mayorga A, Gutiérrez M C, García-Rama C, Afonso C N, Serrano M C. Tailored fringed platforms produced by laser interference for aligned neural cell growth. Macromolecular Bioscience, 2016, 16(2): 255–265

    Article  Google Scholar 

  85. Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017, 29(1): 1603276

    Article  Google Scholar 

  86. Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530

    Article  Google Scholar 

  87. Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H, Chu P K. Biodegradable black phosphorusbased nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7: 12967

    Article  Google Scholar 

  88. Gan Z, Cao Y, Evans R A, Gu M. Three-dimensional deep subdiffraction optical beam lithography with 9 nm feature size. Nature Communications, 2013, 4: 2061

    Google Scholar 

  89. Lin H, Jia B, Gu M. Dynamic generation of Debye diffractionlimited multifocal arrays for direct laser printing nanofabrication. Optics Letters, 2011, 36(3): 406–408

    Article  Google Scholar 

Download references

Acknowledgements

Baohua Jia acknowledges the support from the Australia Research Council through the Discovery Project scheme (DP150102972) and the support from Defense Science Institute and Defense Science and Technology Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Jia.

Additional information

Tieshan Yang received his Bachelor degree in Applied Physics from Ludong University, China in 2012 and his Master degree in Optical Engineering from Beijing University of Technology, China in 2015. He is now a PhD student under the supervision of Prof. Baohua Jia at Swinburne University of Technology, Australia. His research interests focus on laser nanofabrication on 2D materials for functional photonics devices.

Han Lin received his B.Sc. (2005) and M. Sc. (2008) degrees from Xiamen University, China. He was awarded a PhD (2013) from Swinburne University of Technology, Australia. He has dedicated interest and experience on optical system design and dynamic control of light-matter interaction, vectorial diffraction theory and superresolution. He is currently working as the Postdoctoral Research Fellow at Swinburne University of Technology. His research interests focus on light-matter interaction on 2D materials and the applications in the energy storage devices and molecular separation.

Baohua Jia is a full Professor and Research Leader at Swinburne University of Technology. She received her B.Sc. (2000) and M. Sc. (2003) degrees from Nankai University, China. She was awarded a PhD (2007) from Swinburne University of Technology, Australia. She is the Head of Laser and Nanomaterial Interaction (LNI) Group. She uses light to develop various functional nanostructures to effectively harness and store clean energy and boost the performance of communication and imaging devices.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Lin, H. & Jia, B. Two-dimensional material functional devices enabled by direct laser fabrication. Front. Optoelectron. 11, 2–22 (2018). https://doi.org/10.1007/s12200-017-0753-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-017-0753-1

Keywords

Navigation