Advertisement

Frontiers of Optoelectronics

, Volume 10, Issue 3, pp 323–328 | Cite as

Medium chromatic dispersion calculation and correction in spectral-domain optical coherence tomography

  • Vasily A. MatkivskyEmail author
  • Alexander A. Moiseev
  • Sergey Yu. Ksenofontov
  • Irina V. Kasatkina
  • Grigory V. Gelikonov
  • Dmitry V. Shabanov
  • Pavel A. Shilyagin
  • Valentine M. Gelikonov
Research Article

Abstract

A method for determining and correcting distortions in spectral-domain optical coherence tomography images caused by medium dispersion was developed. The method is based on analysis of the phase distribution of the interference signal recorded by an optical coherence tomography device using an iterative approach to find and compensate for the effect of a medium’s chromatic dispersion on point-spread function broadening in optical coherence tomography. This enables compensation of the impact of medium dispersion to an accuracy of a fraction of a radian (units of percent) while avoiding additional measurements and solution of the optimization problem. The robustness of the method was demonstrated experimentally using model and biological objects.

Keywords

optical coherence tomography (OCT) dispersion image resolution restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The research in part of the development of the method was supported by the Russian Foundation for Basic Research (Grant No. 15-29-03897). The experimental verification part was supported by the State task for IAP RAS project No. 0035-2014-0018.

References

  1. 1.
    Drexler W, Fujimoto J G. Optical Coherence Tomography Technology and Applications. Berlin: Springer, 2008, 1357CrossRefGoogle Scholar
  2. 2.
    Puliafito C A, Hee M R, Schuman J S, Fujimoto J G. Optical Coherence Tomography of Ocular Diseases. Thorofare, NJ: Slack Inc., 1996, 376Google Scholar
  3. 3.
    Gupta V, Gupta A, Dogra M R. Atlas of Optical Coherence Tomography of Macular Diseases. Boca Raton: Taylor & Francis, 2004CrossRefGoogle Scholar
  4. 4.
    Zaitsev V Y, Vitkin I A, Matveev L A, Gelikonov VM, Matveyev A L, Gelikonov G V. Recent trends in multimodal optical coherence tomography II. The correlation-stability approach in OCT elastography and methods for visualization of microcirculation. Radiophysics and Quantum Electronics, 2014, 57(3): 210–225CrossRefGoogle Scholar
  5. 5.
    Loduca A L, Zhang C, Zelkha R, Shahidi M. Thickness mapping of retinal layers by spectral-domain optical coherence tomography. American Journal of Ophthalmology, 2010, 150(6): 849–855CrossRefGoogle Scholar
  6. 6.
    Chiu S J, Li X T, Nicholas P, Toth C A, Izatt J A, Farsiu S. Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation. Optics Express, 2010, 18(18): 19413–19428CrossRefGoogle Scholar
  7. 7.
    Fercher A F, Hitzenberger C K, Sticker M, Zawadzki R, Karamata B, Lasser T. Dispersion compensation for optical coherence tomography depth-scan signals by a numerical technique. Optics Communications, 2002, 204(1–6): 67–74CrossRefGoogle Scholar
  8. 8.
    Lippok N, Coen S, Nielsen P, Vanholsbeeck F. Dispersion compensation in Fourier domain optical coherence tomography using the fractional Fourier transform. Optics Express, 2012, 20(21): 23398–23413CrossRefGoogle Scholar
  9. 9.
    Choi W, Baumann B, Swanson E A, Fujimoto J G. Extracting and compensating dispersion mismatch in ultrahigh-resolution Fourier domain OCT imaging of the retina. Optics Express, 2012, 20(23): 25357–25368CrossRefGoogle Scholar
  10. 10.
    Wu X, Gao W. Dispersion analysis in micron resolution spectral domain optical coherence tomography. Journal of the Optical Society of America. B, Optical Physics, 2017, 34(1): 169–177MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lychagov V V, Ryabukho V P. Chromatic dispersion effects in ultra-low coherence interferometry. Quantum Electronics, 2015, 45(6): 556–560CrossRefGoogle Scholar
  12. 12.
    Yu X, Liu X, Chen S, Luo Y, Wang X, Liu L. High-resolution extended source optical coherence tomography. Optics Express, 2015, 23(20): 26399–26413CrossRefGoogle Scholar
  13. 13.
    Xu D, Huang Y, Kang J U. Graphics processing unit-accelerated real-time compressive sensing spectral domain optical coherence tomography. In: Proceedings of SPIE. 2015, 93301BGoogle Scholar
  14. 14.
    Bian H, Gao W. Wavelet transform-based method of compensating dispersion for high resolution imaging in SDOCT. In: Proceedings of SPIE. 2014, 92360XGoogle Scholar
  15. 15.
    Pan L, Wang X, Li Z, Zhang X, Bu Y, Nan N, Chen Y, Wang X, Dai F. Depth-dependent dispersion compensation for full-depth OCT image. Optics Express, 2017, 25(9): 10345–10354CrossRefGoogle Scholar
  16. 16.
    Wang B, Jiang Z, Hu Y, Wang Z. A segmental dispersion compensation method to improve axial resolution of specified layer in FD-OCT. In: Proceedings of SPIE, Optical Measurement Technology and Instrumentation. 2016, 101553LGoogle Scholar
  17. 17.
    Okano M, Okamoto R, Tanaka A, Ishida S, Nishizawa N, Takeuchi S. Dispersion cancellation in high-resolution two-photon interference. Physical Review A, 2013, 88(4): 043845CrossRefGoogle Scholar
  18. 18.
    Shirai T. Modifications of intensity-interferometric spectral-domain optical coherence tomography with dispersion cancellation. Journal of Optics, 2015, 17(4): 045605CrossRefGoogle Scholar
  19. 19.
    Photiou C, Bousi E, Zouvani I, Pitris C. Using speckle to measure tissue dispersion in optical coherence tomography. Biomedical Optics Express, 2017, 8(5): 2528–2535CrossRefGoogle Scholar
  20. 20.
    Photiou C., Pitris C. Tissue dispersion measurement techniques using optical coherence tomography. In: Proceedings of SPIE, Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXI. 2017, 100532WGoogle Scholar
  21. 21.
    Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. In: Proceedings of Conference on Lasers and Electro-Optics/International Quantum Electronics Conference and Photonic Applications Systems Technologies, San Francisco, California. 2004, CWJ6Google Scholar
  22. 22.
    Banaszek K, Radunsky A S, Walmsley I A. Blind dispersion compensation for optical coherence tomography. Optics Communications, 2007, 269(1): 152–155CrossRefGoogle Scholar
  23. 23.
    Matkivsky V A, Moiseev A A, Gelikonov G V, Shabanov D V, Shilyagin P A, Gelikonov V M. Correction of aberrations in digital holography using the phase gradient autofocus technique. Laser Physics Letters, 2016, 13(3): 035601CrossRefGoogle Scholar
  24. 24.
    Leitgeb R A, Wojtkowski M. Complex and coherence noise free Fourier domain optical coherence tomography. In: Drexler W, Fujimoto J G, eds. Optical Coherence Tomography: Technology and Applications. Berlin: Springer, 2008, 177–207CrossRefGoogle Scholar
  25. 25.
    Gelikonov V M, Gelikonov G V, Kasatkina I V, Terpelov D A, Shilyagin P A. Coherent noise compensation in spectral-domain optical coherence tomography. Optics and Spectroscopy, 2009, 106(6): 895–900CrossRefGoogle Scholar
  26. 26.
    Fercher A F. Optical coherence tomography. Journal of Biomedical Optics, 1996, 1(2): 157–173CrossRefGoogle Scholar
  27. 27.
    Welge W A, Barton J K. Expanding functionality of commercial optical coherence tomography systems by integrating a custom endoscope. PLoS One, 2015, 10(9): e0139396CrossRefGoogle Scholar
  28. 28.
    Schott Optical glass datasheet (Electronic document) https://refractiveindex.info/download/data/2015/schott-optical-glass-collection-datasheets-july-2015-us.pdfGoogle Scholar
  29. 29.
    Batovrin V K, Garmash I A, Gelikonov V M, Gelikonov G V, Lyubarskiǐ A V, Plyavenek A G, Safin S A, Semenov A T, Shidlovskiǐ V R, Shramenko M V, Yakubovich S D. Superluminescent diodes based on single-quantum-well (GaAl)As heterostructures. Quantum Electronics, 1996, 26(2): 109–114CrossRefGoogle Scholar
  30. 30.
    Matveev L A, Zaitsev V Y, Gelikonov G V, Matveyev A L, Moiseev A A, Ksenofontov S Y, Gelikonov V M, Sirotkina M A, Gladkova N D, Demidov V, Vitkin A. Hybrid M-mode-like OCT imaging of three-dimensional microvasculature in vivo using reference-free processing of complex valued B-scans. Optics Letters, 2015, 40(7): 1472–1475CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Vasily A. Matkivsky
    • 1
    Email author
  • Alexander A. Moiseev
    • 1
  • Sergey Yu. Ksenofontov
    • 1
  • Irina V. Kasatkina
    • 1
  • Grigory V. Gelikonov
    • 1
  • Dmitry V. Shabanov
    • 1
  • Pavel A. Shilyagin
    • 1
  • Valentine M. Gelikonov
    • 1
  1. 1.Institute of Applied PhysicsRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations