Frontiers of Optoelectronics

, Volume 10, Issue 3, pp 239–254 | Cite as

Research and developments of laser assisted methods for translation into clinical application

  • Ronald Sroka
  • Nikolas Dominik
  • Max Eisel
  • Anna Esipova
  • Christian Freymüller
  • Christian Heckl
  • Georg Hennig
  • Christian Homann
  • Nicolas Hoehne
  • Robert Kammerer
  • Thomas Kellerer
  • Alexander Lang
  • Niklas Markwardt
  • Heike Pohla
  • Thomas Pongratz
  • Claus-Georg Schmedt
  • Herbert Stepp
  • Stephan Ströbl
  • Keerthanan Ulaganathan
  • Wolfgang Zimmermann
  • Adrian Ruehm
Review Article

Abstract

Biophotonics and laser medicine are very dynamic and continuously increasing fields ecologically as well as economically. Direct communication with medical doctors is necessary to identify specific requests and unmet needs. Information on innovative, new or renewed techniques is necessary to design medical devices for introduction into clinical application and finally to become established after positive clinical trials as well as medical approval. The long-term endurance in developing light based innovative clinical concepts and devices are described based on the Munich experience. Fluorescence technologies for laboratory medicine to improve non-invasive diagnosis or for online monitoring are described according with new approaches in improving photodynamic therapeutic aspects related to immunology. Regarding clinically related thermal laser applications, the introduction of new laser wavelengths and laser parameters showed potential in the treatment of varicose veins as well as in lithotripsy. Such directly linked research and development are possible when researchers and medical doctors perform their daily work in immediate vicinity, thus have the possibility to share their ideas in meetings by day.

Keywords

translational biophotonics thermal laser application fluorescence diagnosis on-line monitoring lithotripsy phlebology photodynamic therapy (PDT) laboratory medicine 

References

  1. 1.
    Labbé R F, Vreman H J, Stevenson D K. Zinc protoporphyrin: ametabolite with a mission. Clinical Chemistry, 1999, 45(12): 2060–2072Google Scholar
  2. 2.
    Hennig G, Gruber C, Vogeser M, Stepp H, Dittmar S, Sroka R, Brittenham G M. Dual-wavelength excitation for fluorescencebased quantification of zinc protoporphyrin IX and protoporphyrin IX in whole blood. Journal of Biophotonics, 2014, 7(7): 514–524CrossRefGoogle Scholar
  3. 3.
    Hennig G, Homann C, Teksan I, Hasbargen U, Hasmüller S, Holdt L M, Khaled N, Sroka R, Stauch T, Stepp H, Vogeser M, Brittenham G M. Non-invasive detection of iron deficiency by fluorescence measurement of erythrocyte zinc protoporphyrin in the lip. Nature Communications, 2016, 7: 10776CrossRefGoogle Scholar
  4. 4.
    Balwani M, Desnick R J. The porphyrias: advances in diagnosis and treatment. Blood, 2012, 120(23): 4496–4504CrossRefGoogle Scholar
  5. 5.
    Enriquez de Salamanca R, Sepulveda P, Moran M J, Santos J L, Fontanellas A, Hernández A. Clinical utility of fluorometric scanning of plasma porphyrins for the diagnosis and typing of porphyrias. Clinical and Experimental Dermatology, 1993, 18(2): 128–130CrossRefGoogle Scholar
  6. 6.
    Bonkovsky H L, Maddukuri V C, Yazici C, Anderson K E, Bissell D M, Bloomer J R, Phillips J D, Naik H, Peter I, Baillargeon G, Bossi K, Gandolfo L, Light C, Bishop D, Desnick R J. Acute porphyrias in the USA: features of 108 subjects from porphyrias consortium. The American Journal of Medicine, 2014, 127(12): 1233–1241CrossRefGoogle Scholar
  7. 7.
    Karim Z, Lyoumi S, Nicolas G, Deybach J C, Gouya L, Puy H. Porphyrias: a 2015 update. Clinics and Research in Hepatology and Gastroenterology, 2015, 39(4): 412–425CrossRefGoogle Scholar
  8. 8.
    Lang A, Stepp H, Homann C, Hennig G, Brittenham G M, Vogeser M. Rapid screening test for porphyria diagnosis using fluorescence spectroscopy. SPIE Proceedings, 2015, 9537: 953706CrossRefGoogle Scholar
  9. 9.
    Rimington C. Spectral-absorption coefficients of some porphyrins in the Soret-band region. The Biochemical Journal, 1960, 75(3): 620–623CrossRefGoogle Scholar
  10. 10.
    Westerlund J, Pudek M, Schreiber W E. A rapid and accurate spectrofluorometric method for quantification and screening of urinary porphyrins. Clinical Chemistry, 1988, 34(2): 345–351Google Scholar
  11. 11.
    Markwardt N A, Haj-Hosseini N, Hollnburger B, Stepp H, Zelenkov P, Rühm A. 405 nm versus 633 nm for protoporphyrin IX excitation in fluorescence-guided stereotactic biopsy of brain tumors. Journal of Biophotonics, 2016, 9(9): 901–912CrossRefGoogle Scholar
  12. 12.
    Markwardt N A, Stepp H, Franz G, Sroka R, Goetz M, Zelenkov P, Rühm A. Remission spectrometry for blood vessel detection during stereotactic biopsy of brain tumors. Journal of Biophotonics, 2016Google Scholar
  13. 13.
    Gebhart S C, Lin WC, Mahadevan-Jansen A. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling. Physics in Medicine and Biology, 2006, 51(8): 2011–2027CrossRefGoogle Scholar
  14. 14.
    Yaroslavsky A N, Schulze P C, Yaroslavsky I V, Schober R, Ulrich F, Schwarzmaier H J. Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range. Physics in Medicine and Biology, 2002, 47(12): 2059–2073CrossRefGoogle Scholar
  15. 15.
    Johansson A, Palte G, Schnell O, Tonn J C, Herms J, Stepp H. 5- Aminolevulinic acid-induced protoporphyrin IX levels in tissue of human malignant brain tumors. Photochemistry and Photobiology, 2010, 86(6): 1373–1378CrossRefGoogle Scholar
  16. 16.
    Prahl S A. Optical Absorption of Hemoglobin, tabulated data compiled from various sources (1999), http://omlc.ogi.edu/spectra/ hemoglobinGoogle Scholar
  17. 17.
    Wårdell K, Hemm-Ode S, Rejmstad P, Zsigmond P. Highresolution laser Doppler measurements of microcirculation in the deep brain structures: a method for potential vessel tracking. Stereotactic and Functional Neurosurgery, 2016, 94(1): 1–9CrossRefGoogle Scholar
  18. 18.
    Johansson A, Faber F, Kniebühler G, Stepp H, Sroka R, Egensperger R, Beyer W, Kreth F W. Protoporphyrin IX fluorescence and photobleaching during interstitial photodynamic therapy of malignant gliomas for early treatment prognosis. Lasers in Surgery and Medicine, 2013, 45(4): 225–234CrossRefGoogle Scholar
  19. 19.
    Rühm A, Stepp H, Beyer W, Hennig G, Pongratz T, Sroka R, Schnell O, Tonn J C, Kreth F W. 5-ALA based photodynamic management of glioblastoma. Proceedings of the Society for Photo- Instrumentation Engineers, 2014, 8928: 89280EGoogle Scholar
  20. 20.
    Wang L V, Wu H I. Biomedical Optics: Principles and Imaging. New Jersey: Wiley, 2007Google Scholar
  21. 21.
    Beck T J, Kreth F W, Beyer W, Mehrkens J H, Obermeier A, Stepp H, Stummer W, Baumgartner R. Interstitial photodynamic therapy of nonresectable malignant glioma recurrences using 5-aminolevulinic acid induced protoporphyrin IX. Lasers in Surgery and Medicine, 2007, 39(5): 386–393CrossRefGoogle Scholar
  22. 22.
    Castano A P, Mroz P, Hamblin M R. Photodynamic therapy and anti-tumour immunity. Nature Reviews. Cancer, 2006, 6(7): 535–545CrossRefGoogle Scholar
  23. 23.
    Gollnick S O. Photodynamic therapy and antitumor immunity. Journal of the National Comprehensive Cancer Network: JNCCN, 2012, 10(Suppl 2): S40–S43Google Scholar
  24. 24.
    Korbelik M, Banáth J, Zhang W. Mreg activity in tumor response to photodynamic therapy and photodynamic therapy-generated cancer vaccines. Cancers (Basel), 2016, 8(10): E94CrossRefGoogle Scholar
  25. 25.
    Korbelik M. Induction of tumor immunity by photodynamic therapy. Journal of Clinical Laser Medicine & Surgery, 1996, 14(5): 329–334Google Scholar
  26. 26.
    Gollnick S O, Vaughan L, Henderson B W. Generation of effective antitumor vaccines using photodynamic therapy. Cancer Research, 2002, 62(6): 1604–1608Google Scholar
  27. 27.
    Korbelik M, Banáth J, Saw K M. Immunoregulatory cell depletion improves the efficacy of photodynamic therapy-generated cancer vaccines. International Journal of Molecular Sciences, 2015, 16(11): 27005–27014CrossRefGoogle Scholar
  28. 28.
    Garg A D, Vandenberk L, Koks C, Verschuere T, Boon L, Van Gool S W, Agostinis P. Dendritic cell vaccines based on immunogenic cell death elicit danger signals and T cell-driven rejection of highgrade glioma. Science Translational Medicine, 2016, 8(328): 328ra27CrossRefGoogle Scholar
  29. 29.
    Johansson A, Stepp H, Beck T, Beyer W, Pongratz T, Sroka R, Meinel T, Stummer W, Kreth FW, Tonn J C, Baumgartner R. ALAmediated fluorescence- guided resection (FGR) and PDT of glioma. In: Proceedings of 12th World Congress of the International Photodynamic Association: Photodynamic Therapy: Back to the Future. 2009, 7380Google Scholar
  30. 30.
    Schwartz C, Ruehm A, Tonn J C, Kreth S, Kreth F W. Interstitial photodynamic therapy of de-novo glioblastoma multiforme WHO IV:a feasibility study. In: Proceedings of 66th Annual Meeting of the Society of Neuro-Oncology. 2015, SURG-25Google Scholar
  31. 31.
    Stummer W, Beck T, Beyer W, Mehrkens J H, Obermeier A, Etminan N, Stepp H, Tonn J C, Baumgartner R, Herms J, Kreth FW. Long-sustaining response in a patient with non-resectable, distant recurrence of glioblastoma multiforme treated by interstitial photodynamic therapy using 5-ALA: case report. Journal of Neuro-Oncology, 2008, 87(1): 103–109CrossRefGoogle Scholar
  32. 32.
    Kammerer R, Buchner A, Palluch P, Pongratz T, Oboukhovskij K, Beyer W, Johansson A, Stepp H, Baumgartner R, Zimmermann W. Induction of immune mediators in glioma and prostate cancer cells by non-lethal photodynamic therapy. PLoS One, 2011, 6(6): e21834CrossRefGoogle Scholar
  33. 33.
    Etminan N, Peters C, Lakbir D, Bünemann E, Börger V, Sabel M C, Hänggi D, Steiger H J, Stummer W, Sorg R V. Heat-shock protein 70-dependent dendritic cell activation by 5-aminolevulinic acidmediated photodynamic treatment of human glioblastoma spheroids in vitro. British Journal of Cancer, 2011, 105(7): 961–969CrossRefGoogle Scholar
  34. 34.
    Navarro L, Min R J, Boné C. Endovenous laser: a new minimally invasive method of treatment for varicose veins–preliminary observations using an 810 nm diode laser. Dermatol Surgery, 2001, 27(2): 117–122Google Scholar
  35. 35.
    Min R J, Zimmet S E, Isaacs M N, Forrestal M D. Endovenous laser treatment of the incompetent greater saphenous vein. Journal of Vascular and Interventional Radiology: JVIR, 2001, 12(10): 1167–1171CrossRefGoogle Scholar
  36. 36.
    Mordon S R, Wassmer B, Zemmouri J. Mathematical modeling of endovenous laser treatment (ELT). Biomedical Engineering Online, 2006, 5(1): 26CrossRefGoogle Scholar
  37. 37.
    Minaev V P, Sokolov A L, Lyadov K V, Lutsenko M M, Zhilin K M. Endovenous laser treatment (EVLT) of safernous vein reflux with 1.56 mm laser. Proceedings of the Society for Photo-Instrumentation Engineers, 2009, 7373: 73731DGoogle Scholar
  38. 38.
    Schmedt C G, Sroka R, Steckmeier S, Meissner O A, Babaryka G, Hunger K, Ruppert V, Sadeghi-Azandaryani M, Steckmeier B M. Investigation on radiofrequency and laser (980 nm) effects after endoluminal treatment of saphenous vein insufficiency in an ex-vivo model. European Journal of Vascular and Endovascular Surgery, 2006, 32(3): 318–325CrossRefGoogle Scholar
  39. 39.
    Sroka R, Weick K, Steckmaier S, Steckmaier B, Blagova R, Sroka I, Sadeghi-Azandaryani M, Maier J, Schmedt C G. The ox-foot-model for investigating endoluminal thermal treatment modalities of varicosis vein diseases. ALTEX, 2012, 29(4): 403–410CrossRefGoogle Scholar
  40. 40.
    Sroka R, Weick K, Sadeghi-Azandaryani M, Steckmeier B, Schmedt C G. Endovenous laser therapy–application studies and latest investigations. Journal of Biophotonics, 2010, 3(5-6): 269–276CrossRefGoogle Scholar
  41. 41.
    Sroka R, Pongratz T, Siegrist K, Burgmeier C, Barth H D, Schmedt C G. Endovenous laser application. Strategies to improve endoluminal energy application. Phlebologie, 2013, 42(3): 121–129CrossRefGoogle Scholar
  42. 42.
    Sroka R, Schmedt C G, Steckmeier S, Meissner O A, Beyer W, Babaryka G, Steckmeier B. Ex-vivo investigation of endoluminal vein treatment by means of radiofrequency and laser irradiation. Medical Laser Application, 2006, 21(1): 15–22CrossRefGoogle Scholar
  43. 43.
    Gloviczki P, Comerota A J, Dalsing M C, Eklof B G, Gillespie D L, Gloviczki ML, Lohr JM, McLafferty R B, Meissner MH, Murad M H, Padberg F T, Pappas P J, Passman M A, Raffetto J D, Vasquez M A, Wakefield T W. The care of patients with varicose veins and associated chronic venous diseases: clinical practice guidelines of the Society for Vascular Surgery and the American Venous Forum. Journal of Vascular Surgery, 2011, 53(5Suppl): 2S–48SCrossRefGoogle Scholar
  44. 44.
    National Guideline. Varicose veins in the legs. The diagnosis and management of varicose veins. Agency for Healthcare Research and Quality (AHRQ), Rockville MDGoogle Scholar
  45. 45.
    Davidson S R H, Vitkin I A, Sherar M D, Whelan W M. Characterization of measurement artefacts in fluoroptic temperature sensors: implications for laser thermal therapy at 810 nm. Lasers in Surgery and Medicine, 2005, 36(4): 297–306CrossRefGoogle Scholar
  46. 46.
    Klingenberg M, Bohris C, Niemz M H, Bille J F, Kurek R, Wallwiener D. Multifibre application in laser-induced interstitial thermotherapy under on-line MR control. Lasers in Medical Science, 2000, 15(1): 6–14CrossRefGoogle Scholar
  47. 47.
    Grattan K T V, Selli R K, Palmer A W. Ruby fluorescence wavelength division fiber-optic temperature sensor. Review of Scientific Instruments, 1987, 58(7): 1231–1234CrossRefGoogle Scholar
  48. 48.
    Sroka R, Hemmerich M, Pongratz T, Siegrist K, Brons J, Linden S, Meier R, Schmedt C G. Endovenous laser application. Possibilities of online monitoring. Phlebologie, 2013, 42(3): 131–138CrossRefGoogle Scholar
  49. 49.
    Bader M J, Pongratz T, Khoder W, Stief C G, Herrmann T, Nagele U, Sroka R. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance. World Journal of Urology, 2015, 33(4): 471–477CrossRefGoogle Scholar
  50. 50.
    Simmons W N, Cocks F H, Zhong P, Preminger G. A composite kidney stone phantom with mehanical properties controllable over the range of properties of human kidney stones. Journal of the Mechanical Behavior of Biomedical Materials, 2010, 3(1): 130–133CrossRefGoogle Scholar
  51. 51.
    Esch E, Simmons W N, Sankin G, Cocks H F, Preminger G M, Zhong P. A simple method for fabricating artificial kidney stones of different physical properties. Urological Research, 2010, 38(4): 315–319CrossRefGoogle Scholar
  52. 52.
    Sea J, Jonat L M, Chew B H, Qiu J, Wang B, Hoopman J, Milner T, Teichman J M. Optimal power settings for Holmium:YAG lithotripsy. The Journal of urology, 2012, 187(3): 914–919CrossRefGoogle Scholar
  53. 53.
    Kang H W, Lee H, Teichman J M H, Oh J, Kim J, Welch A J. Dependence of calculus retropulsion on pulse duration during Ho: YAG laser lithotripsy. Lasers in Surgery and Medicine, 2006, 38(8): 762–772CrossRefGoogle Scholar
  54. 54.
    Sroka R, Stepp H, Hennig G, Brittenham G M, Rühm A, Lilge L. Medical laser application: translation into the clinics. Journal of Biomedical Optics, 2015, 20(6): 061110CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ronald Sroka
    • 1
    • 2
  • Nikolas Dominik
    • 1
    • 2
  • Max Eisel
    • 1
    • 2
  • Anna Esipova
    • 3
  • Christian Freymüller
    • 1
    • 2
  • Christian Heckl
    • 1
    • 2
  • Georg Hennig
    • 1
    • 2
  • Christian Homann
    • 1
    • 2
  • Nicolas Hoehne
    • 1
    • 2
  • Robert Kammerer
    • 2
    • 5
  • Thomas Kellerer
    • 1
    • 2
  • Alexander Lang
    • 1
    • 2
  • Niklas Markwardt
    • 1
    • 2
  • Heike Pohla
    • 2
    • 4
  • Thomas Pongratz
    • 1
    • 2
  • Claus-Georg Schmedt
    • 1
    • 3
  • Herbert Stepp
    • 1
    • 2
  • Stephan Ströbl
    • 1
    • 2
  • Keerthanan Ulaganathan
    • 1
    • 2
  • Wolfgang Zimmermann
    • 2
    • 4
  • Adrian Ruehm
    • 1
    • 2
  1. 1.Laser-Forschungslabor, LIFE-CenterHospital of University, Ludwig-Maximilians University MunichMunichGermany
  2. 2.Department of UrologyHospital of University, Ludwig-Maximilians University MunichMunichGermany
  3. 3.Department of Vascular SurgeryDiakonie KlinikumSchwäbisch HallGermany
  4. 4.Labor für Tumorimmunologie, LIFE-CenterHospital of University, Ludwig-Maximilians University MunichMunichGermany
  5. 5.Friedrich-Loeffler-InstituteFederal Research Institute for Animal HealthGreifswald- Insel RiemsGermany

Personalised recommendations